Álgebra de Grassmann em mecânica estatística: dos fundamentos à função de partição
Palavras-chave:
álgebra de Grassmann, função de grande partição, modelo de HubbardResumo
Diversos métodos para o estudo de materiais foram desenvolvidos a partir do formalismo da mecânica quântica de muitas partículas em termos da álgebra de Grassmann. A teoria do campo médio dinâmico é um exemplo. Visando auxiliar estudantes de pós-graduação e pesquisadores em geral no estudo desses métodos nós elaboramos este trabalho, em que a estrutura conceitual e matemática da álgebra de Grassmann são apresentadas com dedução detalhada em um contexto físico. A função de grande partiçãoescrita nesse formalismo é obtida usando as integrais de trajetórias de Feynman. Como um exemplo para um hamiltoniano específico nós escrevemos a função de grande partição em termos das variáveis de Grassmann para o modelo de Hubbard. A fim de tornar este trabalho mais auto-explicativo nós preparamos um apêndice onde são definidos os operadores fermiônicos de criação e destruição e
deduzidas suas relações de anticomutação de uma maneira fisicamente intuitiva.
Downloads
Publicado
2012-06-22
Como Citar
Ribeiro, A. N., & Macedo, C. A. (2012). Álgebra de Grassmann em mecânica estatística: dos fundamentos à função de partição. Scientia Plena, 8(3(b). Recuperado de https://scientiaplena.org.br/sp/article/view/954
Edição
Seção
Artigos
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) após a sua publicação, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.