Electrodeposition of crack-free and amorphous Ni-Mo alloys with high Mo content from gluconate baths
DOI:
https://doi.org/10.14808/sci.plena.2023.104201Keywords:
electrodeposition, Ni-Mo, sodium gluconateAbstract
In this article, electroplated Ni-Mo alloys with high Mo content from gluconate baths are presented. Specifically, the influence of current density on the electrodeposition process, which produced crack-free Ni-Mo alloys with high Mo content, was evaluated. Commonly, Ni-Mo electrodeposition is performed in citrate solutions, as citrate ions promote coordination compounds with greater stability compared to mono and bivalent ligands. However, due to the high internal stress caused by Mo in the coating when its content is very high, microcracks are formed along the surface, causing defects in the deposit. Gluconate baths have been proven to produce crack-free alloys, even when current density is high. The deposits were evaluated for chemical composition by Energy-Dispersive X-ray Specrometry (EDS) and surface morphology by electron microscopy using a Scanning Electron Microscope (SEM). Furthermore, the deposition process was evaluated for current efficiency, and a reaction mechanism was proposed based on observations acquired by other authors. The highest Mo content obtained was 43% by weight. The highest current efficiency was 26%, obtained at 30 mA/cm².
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Arthur Filgueira de Almeida, Josiane Dantas Costa, Mikarla Baía de Sousa, Joyce Ingrid Venceslau de Souto, Renato Alexandre Costa de Santana, Aureliano Xavier dos Santos, José Anderson Machado Oliveira, José Jailson Nicácio Alves, Ana Regina Nascimento Campos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work