Removal of textile azo dyes with mixed biomass of Aspergillus niger and orange peel (Citrus sinensis L. Osbeck)
DOI:
https://doi.org/10.14808/sci.plena.2021.064202Keywords:
Adsorbent, textile dye, orange peel residueAbstract
This study evaluates the removal of textile dyes using mixed adsorbents prepared by the growth of Aspergillus niger in orange peels. The highest azo dye removal efficiency was obtained at pH 2, solid: liquid ratio (1: 4 g·mL-1) and time of equilibrium of 250 minutes for each dye. The concentrations of Remazol Black B (RB) and Remazol Red (RR) in both synthetic textile effluents were between 25 mg·L-1 and 100 mg·L-1. The mixed adsorbent was characterized by X-ray diffraction (XRD), spectroscopy infrared region (FTIR) and scanning electron microscopy (SEM). The results indicated that there was a 100% removal of RB and 94.85% of RR at the concentration of 25 mg·L-1. At the concentration of 100 mg·L-1, the percentages of removal reached 98.87% for RB and 96.37% for RR, respectively. The proposed mixed adsorbent was able to remove the textile dyes, presenting adsorptive capacities of 20.77 mg·g-1 and 19.28 mg·g-1 for the dyes RB and RR. Regarding the adsorption kinetics, the experimental data showed that the pseudo second order model was the one that best explained the adsorptive process. For the equilibrium results, the Langmuir model and the Langmuir-Freundlich model were the ones that best fit the experimental data of RB and RR, respectively. The mixed adsorbent produced is a promising alternative for the treatment of textile effluents.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Karina Carvalho Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work