Adsorption of carbon dioxide using a biochar produced from mangaba seeds (Hancornia speciosa)
DOI:
https://doi.org/10.14808/sci.plena.2018.034202Keywords:
Global warming, adsorption, biocharAbstract
The concentration of greenhouse gases has increased considerably in the Earth's atmosphere due to human actions, intensifying global warming and triggering climate change. Because of this scenario, actions are being taken to reduce emissions of these pollutants, especially carbon dioxide, CO2. The Kyoto Protocol (Kyoto, 1997) and the 21st Conference of the Parties, COP21 (Paris, 2015), are examples of global agreements to reduce climate change. In this context, advanced technologies for the sequestration of carbon dioxide are under development, especially those based on the physical adsorption. This study integrates this class of processes and used a biochar produced through the pyrolysis of mangaba seeds (Hancornia speciosa) as adsorbent material. Biochar was characterized in terms of surface area, pore diameter, morphology and determination of functional groups. The adsorption of CO2 was performed using the static volumetric technique, by varying the initial pressure of the system, which consisted of a fixed-bed column on a semi-pilot scale. The experimental data were adjusted to models in the literature. The Freundlich model was the best fit, thus confirming the adsorption in multilayers. The adsorption kinetics followed the intraparticle diffusion model, indicating that diffusion is the limiting step of the process. The higher adsorption capacity was verified, with a maximum value of 5.21 mol CO2 / kg of bioadsorbent.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work