Elemental mapping by synchrotron radiation X-Ray microfluorescence in cellular spheroid of prostate tumor cells

R. G. Leitão, C. A. N. Santos, A. Palumbo Jr., P. A. V. R. Souza, G. R. Pereira, M. J. Anjos, L. E. Nasciutti, R. T. Lopes

Resumo


Prostate cancer is the sixth most common type of cancer and the third most common in males in Western industrialized countries. Cellular spheroid serves as excellent physiologic tumor models as they mimic avascular tumors and micrometastases. Trace elements play a significant role in biological processes. They are capable of affecting human health by competing with essential elements for available binding sites and by the activation or inhibition of reactions between metabolic enzymes. It is well known that zinc levels in the peripheral zone of dorsal and lateral lobes of the prostate are almost 10 times higher than in other soft tissues. Prostate tumor cells were isolated of the prostate tissue samples that were collected from patients submitted to surgery. The measurements were performed in XRF beam line at the Synchrotron Light National Laboratory (LNLS) in Campinas, Brazil. The results showed that all elements were heterogeneously distributed in different areas of the spheroids analyzed. P, S and Cl showed similar elemental distribution in all the samples analyzed while K, Ca, Fe, and Cu showed different elemental distribution. In all spheroids analyzed, Zn presented more intense distributions in the central region of the spheroid. The relationship between the function of Zn in the secretory epithelial cells and the carcinogenic process suggests that more studies on elemental mapping in spheroids are necessary.

Palavras-chave


X-Ray Fluorescence;Elemental distribution; Prostate tumor cells.

Texto completo:

PDF (English) PDF

Apontamentos

  • Não há apontamentos.


Direitos autorais 2016 Scientia Plena

Licença Creative Commons
Todo conteúdo deste periódico, salvo quando explicitado de forma diferente, está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.