

An update to the regression to estimate the body mass of extinct xenarthrans

Uma atualização na regressão para estimar a massa corporal de xenartros extintos

M. A. T. Dantas¹*; J. P. da Costa²; A. D. S. Soares³; R. E. Fraga⁴

¹Laboratório de Ecologia & Geociências, Universidade Federal da Bahia (IMS/CAT), Campus Anísio Teixeira, 45029-094, Vitória da Conquista, Bahia, Brazil

²Programa de Pós-graduação em Geociências, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil

³Programa de Pós-graduação em Zoologia, Universidade Estadual de Santa Cruz, 45662-900, Ilhéus, Bahia, Brazil ⁴Laboratório de Biologia Molecular, Universidade Federal da Bahia (IMS/CAT), Campus Anísio Teixeira,

45029-094, Vitória da Conquista, Bahia, Brazil

*matdantas@yahoo.com.br (Recebido em 18 de março de 2024; aceito em 12 de junho de 2024)

In this paper, we provide an update on a regression model designed to estimate the body mass of extinct xenarthrans, particularly those from the Brazilian Intertropical Region. We utilized 84 samples from nine extant xenarthrans species (Pilosa and Cingulata), yielding excellent quality indices ($R^2 = 0.53$, %PE = 4.94, %SEE = 4.44). While there are other good options, we reinforce that this is an excellent tool for estimating the body mass of extinct xenarthrans.

Key words: Xenarthra, ordinary least square, Brazilian Intertropical Region.

No presente trabalho apresentamos uma atualização para uma regressão produzida para estimar a massa corporal de xenartros extintos, em especial os da Região Intertropical Brasileira. Utilizamos 84 amostras de nove espécies viventes de xenartras (Pilosa e Cingulata), alcançando excelentes índices de qualidade ($R^2 = 0.53$, %PE = 4.94, %SEE = 4.44). Apesar de existirem outras ótimas opções, reforçamos que esta é também é uma excelente ferramenta para estimar a massa corporal de xenartros extintos. Palavras-chave: Xenarthra, mínimos quadrados, Região Intertropical Brasileira.

1. INTRODUCTION

Since 2017, Dantas and collaborators have endeavored to estimate the body mass of extinct xenarthrans from the Brazilian Intertropical Region (BIR) [1]. Initially, they employed allometric regression utilizing the minimum width of the diaphysis of the humerus and femur [2]. A multiple factor in the femur diaphysis were employed in an attempt to determine a more realistic weight for these taxa [1, 3, 4].

Inspired by the regressions proposed by Anderson et al. (1985) [2] and Campione and Evans (2012) [5], a novel method to estimate the body mass of extinct giant sloths and armadillos was proposed using data from extant Xenarthra [6]. Although this new regression exhibited good quality indices, it faced criticism [7, 8], prompting the exploration of additional data to enhance the initial regression. Therefore, the primary objective of this study was to update and justify the utilization of the earlier Xenarthra body mass regression.

2. MATERIAL AND METHODS

We included 79 new samples belonging to extant sloths (*Bradypus torquatus* and *Bradypus variegatus*), anteaters (*Tamandua tetradactyla*, *Myrmecophaga tridactyla*), and armadillos (*Cabassous unicinctus*, *Cabassous tatouay*, *Dasypus novemcinctus*, *Dasypus septemcinctus*, and *Euphractus sexcinctus*). In total, the update comprised 84 samples (Table 1). To generate the update, we measured (in milimeter) the circumference at the minimum width of the mid-length (MWM) of the humerus and femoral diaphysis association with the body mass (in grams).

In contrast to previous paper [6], we opted for ordinary least squares (OLS) regression. This choice is based on its superior performance with allometric data compared to the reduced major axis (RMA) [9, 10]. All data underwent logarithmic transformation (base 10). The assessment of the regression quality relied on the correlation of logarithmized data, percent predicted error (% PE) [11, 12], and standard error of the estimate (% SEE) [11].

Xenarthra species	SP#	Humerus Circunference (mm)	Femur Circunference (mm)	Body Mass (g)
Bradypus torquatus	MN 23921	27	28	4200
Bradypus torquatus	UFES 1918	39	40	5500
Bradypus variegatus	UFMG 3988	22	22	750
Bradypus variegatus	UFMG 3987	27	27	1400
Bradypus variegatus	MN 79120	25	26	5000
Bradypus variegatus	MN 79570	29	30	5600
Bradypus variegatus	MN 83742	24	25	6000
Cabassous tatouay	MN 79317	37	40	3100
Cabassous tatouay	MN 4989	35	31	4700
Cabassous unicinctus	LEG 1893	28	34	900
Cabassous unicinctus	LEG 1897	25	37	3000
Choloepus didactylus	ROM 31160	40	43	6200
Choloepus hoffmanni	ROM 89635	33	35	4500
Dasypus novemcinctus	LEG 1890	19	25	283
Dasypus novemcinctus	LEG 1891	22	29	600
Dasypus novemcinctus	MN 4984	16	27	620
Dasypus novemcinctus	LEG 1894	18	20	1000
Dasypus novemcinctus	LEG 1895	31	37	1000
Dasypus novemcinctus	MN 5007	19	24	1090
Dasypus novemcinctus	LEG 1896	17	23	1200
Dasypus novemcinctus	MN 4671	17	28	1750
Dasypus novemcinctus	MN 79546	19	29	2000
Dasypus novemcinctus	MN 79585	20	31	2500
Dasypus novemcinctus	MN 81786	20	29	2500
Dasypus novemcinctus	MN 5008	22	32	2580
Dasypus novemcinctus	MN 4981	23	32	2700
Dasypus novemcinctus	ROM R2385	22	30	3077
Dasypus novemcinctus	MN 5009	21	30	3150
Dasypus novemcinctus	LEG 1898	33	43	3400
Dasypus novemcinctus	MN 79372	25	31	3500
Dasypus novemcinctus	MN 83554	21	32	3500
Dasypus novemcinctus	MN 5006	24	35	3555
Dasypus novemcinctus	MN 4672	25	35	3970
Dasypus novemcinctus	MN 5500	30	41	4000
Dasypus novemcinctus	MN 79456	21	32	4000
Dasypus novemcinctus	MN 79536	25	40	4000
Dasypus septemcinctus	UFES 1217	19	24	510
Dasypus septemcinctus	MN 63454	13	22	670

Table 1. Body mass (in g), humerus and femur circunference (in mm) of extant xenarthran species.

Euphractus sexcinctus	MN 4992	31	32	1680
Euphractus sexcinctus	MN 5000	30	31	2070
Euphractus sexcinctus	MN 4994	30	28	2280
Euphractus sexcinctus	MN 4996	27	28	2280
Euphractus sexcinctus	MN 4976	29	28	2400
Euphractus sexcinctus	MN 5003	32	35	2520
Euphractus sexcinctus	MN 5001	30	32	2560
Euphractus sexcinctus	MN 4998	32	33	2700
Euphractus sexcinctus	MN 4997	32	34	2920
Euphractus sexcinctus	MN 4977	33	30	3030
Euphractus sexcinctus	MN 4999	32	34	3080
Euphractus sexcinctus	MN 4980	31	32	3090
Euphractus sexcinctus	MN 4995	34	33	3340
Euphractus sexcinctus	MN 4986	45	43	4450
Euphractus sexcinctus	MN 4993	30	33	4610
Euphractus sexcinctus	MN 4973	34	35	4700
Euphractus sexcinctus	MN 4979	35	30	5100
Euphractus sexcinctus	MN 4991	34	35	5200
Euphractus sexcinctus	MN 4990	31	32	5250
Euphractus sexcinctus	MN 4982	36	34	5280
Euphractus sexcinctus	MN 5002	33	34	5430
Euphractus sexcinctus	MN 4972	35	36	5500
Euphractus sexcinctus	MN 4988	38	39	5580
Euphractus sexcinctus	MN 4978	34	35	6400
Myrmecophaga tridactyla	MN 5073	73	71	33000
Priodontes maximus	ROM 46260	68	79	29500
Tamandua tetradactyla	LEG 1892	34	33	600
Tamandua tetradactyla	MN 5068	32	33	1110
Tamandua tetradactyla	MN 5069	33	30	2240
Tamandua tetradactyla	MN 4538	33	32	2620
Tamandua tetradactyla	MZFS1159	29	26	3820
Tamandua tetradactyla	UFES 1211	45	35	3875
Tamandua tetradactyla	MN 79361	35	30	4000
Tamandua tetradactyla	MN 83559	33	32	4000
Tamandua tetradactyla	MN 73484	32	31	4250
Tamandua tetradactyla	MN 79209	37	39	4500
Tamandua tetradactyla	MN 79287	40	32	4500
Tamandua tetradactyla	MN 79503	33	34	4570
Tamandua tetradactyla	MN 79564	33	31	5000
Tamandua tetradactyla	MN 79571	33	30	5000
Tamandua tetradactyla	MN 5515	33	32	5070
Tamandua tetradactyla	ROM 113857	35	30	5470
Tamandua tetradactyla	MN 5059	38	33	5500
Tamandua tetradactyla	MN 3846	36	34	5550
Tamandua tetradactyla	MN 5061	37	39	5850
Tamandua tetradactyla	MN 5056	39	40	6670

Through the application of an updated regression (see Results and Discussion), we recalculated the body masses of *Eremotherium laurillardi*, *Glossotherium phoenesis*, *Ocnotherium giganteum*, *Catonyx cuvieri*, *Valgipes bucklandi*, *Nothrotherium maquinense*, *Ahytherium aureum*, *Australonyx aquae*, *Pachyarmatherium brasiliense*, *Pampatherium humboldti*, *Holmesina paulacoutoi*, and *Holmesina criptae*.

The majority of the samples were from individuals with either the humerus or femur only. Consequently, the circumference (C) of the missing bone was estimated using the mean proportion between the humerus and femur (f/h) in individuals with partial skeletons containing both bones (Table 2).

Taxon	Sample -	Circunference (in mm)		Dream anti-one (f/h)
		Femur (f)	Humerus (h)	Proportion (I/II)
Pampatheriidae				
H. paulacoutoi	MCL 501	155	123	1.25
H. criptae	LPP-PV-001	126	104	1.20
P. humboldti	MCL 900	148	113	1.30
Mean value				1.25
Megatheriidae				
E. laurillardi	Port Lavaca, Texas, USA	532	398	1.35
N. maquinense	LEG 1454	169	140	1.20
N. maquinense	LEG 1359/1357	180	154	1.15
N. maquinense	MCL 1020	125	86	1.45
Mean value				1.28
Mylodontidae				
G. phoenesis	MCL 4303	313	210	1.50
Scelidotheriidae				
C. cuvieri	LEG 1179/1180	182	150	1.20
C. cuvieri	LEG s/n	370	200	1.85
V. bucklandi	LEG 1718/1720	277	175	1.60
V. bucklandi	LEG s/n	210	120	1.75
Mean value				1.60

 Table 2: Proportion between humerus (h) and femur (f) used to estimate the body mass of extinct xenarthrans.

The proportion could be determined for individuals described in the literature (*E. laurillardi*, *C. cuvieri*, *H. criptae*) [4, 13, 14]. Alternatively, it could be determined for individuals measured in collections (*N. maquinense*, *V. bucklandi*, *G. phoenesis*, *P. humboldti*, and *H. paulacoutoi*; Table 2). To estimate the body mass we used the mean values of f/h for the families (Table 2). For *P. brasiliense*, *O. giganteum*, and the Megalonychidae taxa were used the proportions found in Pampatheriidae, *G. phoenesis*, and Megatheriidae, respectively.

All studied taxa were categorized as juveniles, subadults, or adults based on the stage of epiphysis–diaphysis fusion in both the humerus and femur. Juveniles exhibit a clear separation between the epiphysis and diaphysis. Subadults display a visible scar between the epiphysis and diaphysis. Adults show complete fusion of both epiphyses to the diaphysis.

3. RESULTS AND DISCUSSION

3.1 Criticism to the earlier regression

The initial criticisms of the Xenarthra regression [6, 7] focused on its creation involving the use of only five samples and the estimation of body mass for extinct xenarthrans significantly heavier than those included in the regression. Subsequently, Barbosa et al. (2023) [8] raised new criticisms, suggesting that: (i) the use of the MWM is problematic for estimating the body mass

of extinct xenarthrans; (ii) the database used was phylogenetically restricted; and (iii) the %PE of the original proposition [6] regression was "high".

Dantas (2022) [6] and Dantas (2022) [15] acknowledges that five samples constitute a low number. Nevertheless, he defends the use of a limited sample size, asserting that the quality indices are moderate (rather than high), considering it a viable option, especially because it was constructed using data from extant Xenarthra. Furthermore, he demonstrated that the circumference and minimum width at the mid-length of the diaphysis are proportional in a sample comprising both extant and extinct xenarthrans. This is supported by the high correlations and similar slopes, suggesting that their volume could also increase proportionally with a strong correlation, which was also observed across all mammals [5].

We observed an overlook criticism regarding the use of MWM to estimate the body mass of extinct xenarthrans [8]. This criticism is directed at the utilization of allometric regressions created using data from non-xenarthrans [16], resulting in an overestimation of body mass. This stimulates the proposition of the development of a specific regression using data from extant xenarthrans [16], which was subsequently implemented [6].

Ultimately, the regression was not phylogenetically restricted; it incorporated data from the focus group [17], which exhibited distinctive humerus and femur morphologies. Consequently, it is a favorable choice for proposing estimations within this specific group of extinct mammals.

3.2. Xenarthra body mass regression updated

The updated regression (1) (Figure 1) exhibited a moderate correlation ($R^2 = 0.53$), low %PE (4.94), and low %SEE (4.44). The correlation was lower than the regression originally proposed [6]. Nevertheless, the %PE and %SEE exhibited excellent values, surpassing those obtained using multiple bones [18, 19].

$$\log_{10}BM = -1.0 + 2.5 * \log_{10}C_{(h+f)}$$
(1)

The significant advantage of this regression line is the utilization of one or two bones (humerus and/or femur) from the same individual. This practice prevents the amalgamation of bones from distinct individuals of varying ontogenetic stages and sexes (male/female). The regression facilitates the estimation of body mass of numerous individuals, generating a substantial number of samples. This, in turn, has contributed to a more comprehensive understanding of the body mass variation within these taxa.

Figure 1: Ordinary least squares of log of body mass (in g) and log of the sum of femur (f) and humerus (h) circumferences (C).

3.3. New xenarhrans body mass estimations for the Late Pleistocene of BIR

Utilizing the updated regression, we proposed new estimations for Late Pleistocene giant sloths and armadillos from the BIR. In Comparison with earlier propositions (Table 3), the body mass of armadillos was similar, except for those proposed elsewhere [8], which, on average, were double our estimations (Table 3).

 Table 3. Mean estimated body mass for adult individuals of 12 xenarthrans taxa (exception to

 Ahytherium aureum and Catonyx cuvieri, juvenile - J; and Au. aquae, subadult - S) that lived in the late

 Pleistocene of Brazilian Intertropical Region and comparison with previous estimates.

Taxa	Mean±sd (min-max)	Dantas (2022)	Barbosa et al. (2023) [8]	
		[6]	method 1	method 2
P. brasiliense	68±28 (43-94)	56	89	151±5
H. criptae	80	74	-	-
H. paulacoutoi	94±34 (61-129)	114	176±33	194±10
Pa. humboldti	108	98	240±55	215±103
N. maquinense	134±64 (57-270)	157±20	-	109±35
A. aureum	214±29 (172-236) ^J	186	-	-
Аи. аqиае	296 ^s	226	-	-
V. bucklandi	703±227 (274-1,065)	462±127	731±120	522±193
C. cuvieri	901±197 (617-1,171)	598±17	776±162	558±357
G. phoenesis	936	463	-	825±189
O. giganteum	1,188±300 (837-1,590)	842	$1,721\pm526$	$1,226\pm282$
E. laurillardi	3,144±1,993 (968-5,969)	2,014±205	4,486±185	$2,725\pm1,803$

Estimates for the giant sloths *N. maquinense*, *A. aureum*, *Au. aquae*, *V. bucklandi*, and *C. cuvieri* were comparable on average (Table 3). Exceptions were noted in previous estimations [6] for *G. phoenesis*, *O. giganteum*, and *E. laurillardi*, which were, on average, ~44% lower than our estimations, but similar to other results [8].

4. FINAL REMARKS

In this paper, we update the Xenarthra regression [6], which now includes 84 samples and excellent indices of quality ($R^2 = 0.53$, %PE = 4.94, %SEE = 4.44). We agree that regression using multiple bones is a good option to propose the body mass of extinct xenarthrans; however, owing to the limitation of complete skeletons, to avoid a general estimation using bones of individuals with ontogenetic stages and sexes, and to have a large number of samples, we reinforce that Dantas' Xenarthra regression is a viable and excellent option.

Finally, we updated the body mass estimations made for giant sloths and armadillos in the Brazilian Intertropical Region.

5. ACKNOWLEDGEMENTS

To CNPq for financial support through a research fellowship granted to the first author (Process 304394/2023-8). To MSc. Rodrigo Germano (UFES), Dr. Teo Veiga (UEFS), Vitor Emídio, Ana Clara Dumbá Silva, Dr. Fernando Perini (UFMG), Dr. Pedro Cordeiro Estrela (UFPB) and specially to the Mammalogy Sector of the Vertebrates Department at the Museu Nacional of the Universidade Federal do Rio de Janeiro (MN/UFRJ) for the generous provision of body mass data and the access granted to the collection of their respective universities. We thank Dr. Alex Hubbe for the criticism and discussion of the regression methodology.

6. REFERENCES

- Dantas MAT, Cherkinsky A, Bocherens H, Drefahl M, Bernardes C, França, LM. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: Feeding ecology (δ13C), niche breadth and overlap. Quat Sci Rev. 2017;170:152-63. doi: 10.1016/j.quascirev.2017.06.030
- 2. Anderson JF, Hall-Martin A, Russell DA. Long-bone circumference and weight in mammals, birds and dinosaurs. J Zool. 1985;207(1):53-61. doi: 10.1111/j.1469-7998.1985.tb04915.x
- Dantas MAT, Cherkinsky A, Lessa CMB, Santos LV, Cozzuol MA, Omena ÉC, et al. Isotopic paleoecology (δ13C, δ18O) of a Late Pleistocene vertebrate community from the Brazilian Intertropical Region. Rev Bras Paleontol. 2020;23(2):138-52. doi: 10.4072/rbp.2020.2.05
- Dantas MAT, Araújo AV, Eltink E, Alves-Silva, L, Leoni RA, Fêlix PM, Cherkinsky A. Isotopic paleoecology (δ13C) of mesoherbivores from Late Pleistocene of Gruta da Marota, Andaraí, Bahia, Brazil. Hist Biol. 2021;33(5):643-51. doi: 10.1080/08912963.2019.1650742
- 5. Campione NE, Evans DC. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 2012;10(1):1-22.
- 6. Dantas MA. Estimating the body mass of the late Pleistocene megafauna from the South America Intertropical Region and a new regression to estimate the body mass of extinct xenarthrans. J South Am Earth Sci. 2022;103900. doi: 10.1016/j.jsames.2022.103900
- 7. Hubbe A, Machado FA. Comments on "Estimating the body mass of the late Pleistocene megafauna from the South America Intertropical Region and a new regression to estimate the body mass of extinct xenarthrans". J South Am Earth Sci. 2022;119:103994. doi: 10.1016/j.jsames.2022.103994
- 8. Barbosa FHDS, Alves-Silva L, Liparini A, Porpino KDO. Reviewing the body size of some extinct Brazilian Quaternary Xenarthrans. J Quat Sci. 2023;1-8. doi: 10.1002/jqs.3560
- Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ. Restitution of mass–size residuals: validating body condition indices. Ecology. 2005;86(1):155-63. doi: 10.1890/04-0232
- Kilmer JT, Rodríguez RL. Ordinary least squares regression is indicated for studies of allometry. J Evol Bio. 2017:30(1):4-12. doi: 10.1111/jeb.12986
- 11. Valkenburgh BV. Skeletal and dental predictors of body mass in carnivores. In: Damuth J, MacFadden BJ, editors. Body size in Mammalian Paleobiology Estimation and biological implications. New York (US): Cambridge University Press; 1990. p. 181-205.
- Halenar LB. Reconstructing the locomotor repertoire of *Protopithecus brasiliensis*. I. Body size. Anat Rec. 2011;294(12):2024-47. doi: 10.1002/ar.21501
- Mcdonald HG, Lundelius Jr EL. The giant ground sloth *Eremotherium laurillardi* (Xenarthra, Megatheriidae) in Texas. Papers on geology, vertebrate paleontology, and biostratigraphy in honor of Michael O. Woodburne. Mus North Ariz Bull. 2009;65:407-21.
- 14. Moura JF, Góis F, Galliari FC, Fernandes MA. A new and most complete pampathere (Mammalia, Xenarthra, Cingulata) from the Quaternary of Bahia, Brazil. Zootaxa 2019;4661(3):401-44. doi: 10.11646/zootaxa.4661.3.1
- 15. Dantas MA. Reply on "Estimating the body mass of the late Pleistocene megafauna from the South America Intertropical Region and a new regression to estimate the body mass of extinct xenarthrans" by Hubbe and Machado (2022). J South Am Earth Sci. 2022;119:104014.
- 16. Fariña RA, Vizcaíno SF, Bargo MS. Body mass estimations in Lujanian (Late Pleistocene-early Holocene of South America) mammal megafauna. Mastozool Neotrop. 1998;5(2):87-108.
- Casali DM, Boscaini A, Gaudin TJ, Perini FA. Reassessing the phylogeny and divergence times of sloths (Mammalia: Pilosa: Folivora), exploring alternative morphological partitioning and dating models. Zool J Linn Soc. 2022;196(4):1505-51. doi: 10.1093/zoolinnean/zlac041
- Esteban-Trivigno S, Mendoza M, De Renzi M. Body mass estimation in Xenarthra: a predictive equation suitable for all quadrupedal terrestrial placentals? J Morphol. 2008;269(10):1276-93. doi: 10.1002/jmor.10659
- Toledo N, Cassini GH, Vizcaíno SF, Bargo MS. Mass estimation of Santacrucian sloths from the early Miocene Santa Cruz formation of Patagonia, Argentina. Acta Palaeontol Pol. 2014;59(2):267-80. doi: 10.4202/app.20120009