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Climate changes tend to intensify water scarcity in arid and semi-arid regions, making water management 

in these areas more challenging, directly influencing hydrological dynamics, causing impacts on 

ecosystems and society. The Terra Nova River basin is crucial for the water security of the semi-arid region 

of Pernambuco, especially after the construction of the São Francisco River Integration Project (PISF), 

which saw the construction of six reservoirs to supply water for human consumption, agricultural, and 

industrial activities. Therefore, this study aims to analyzes the impacts of climate changes on water quality 

in the Terra Nova River basin in Pernambuco, using long-term data from the Hydrological Response Unit 

System for Pernambuco (SUPer). The ARIMA (Autoregressive Integrated Moving Averages) model is 

employed to predict water quality parameters in climate change scenarios, using data from the 

Intergovernmental Panel on Climate Change (IPCC) and the Oswaldo Cruz Foundation (Fiocruz). The 

variables include air temperature, precipitation, dissolved oxygen, nitrogen, and phosphorus. Simulated 

scenarios were compared with CONAMA No. 357/2005 limits, revealing potential decreases in dissolved 

oxygen and phosphorus concentrations, alongside an increase in nitrogen concentrations. Irregular rainfall 

rates, high air temperatures, and evapotranspiration, combined with conflicts by water resources, may 

exacerbate water access issues in the semi-arid region, worsening the water crisis and threatening water 

security. 

Keywords: hydrological modeling, environmental monitoring, semi-arid climate.  

 

As mudanças climáticas tendem a intensificar a escassez de água em regiões áridas e semiáridas, tornando 

a gestão da água nessas áreas mais desafiadora, influenciando diretamente a dinâmica hidrológica, causando 

impactos nos ecossistemas e na sociedade. A bacia hidrográfica do rio Terra Nova possui importância para 

a segurança hídrica do semiárido pernambucano, visto que após a construção do Projeto de Integração do 

Rio São Francisco (PISF), seis reservatórios foram construídos para oferta de água para consumo humano, 

atividades agrícolas e industriais. Logo, o presente estudo visa analisar o impacto das mudanças climáticas 

na qualidade da água na bacia do rio Terra Nova, em Pernambuco, utilizando dados históricos do Sistema 

de Unidade de Resposta Hidrológica de Pernambuco (SUPer). O modelo ARIMA (Autoregressive 

Integrated Moving Averages) é empregado para prever parâmetros de qualidade da água em cenários de 

mudanças climáticas, utilizando dados do Painel Intergovernamental sobre Mudanças Climáticas (IPCC) e 

da Fundação Oswaldo Cruz (Fiocruz). As variáveis consideradas incluem temperatura, precipitação, 

oxigênio dissolvido, nitrogênio e fósforo. Os cenários simulados foram comparados com os limites do 

CONAMA nº 357/2005, revelando potenciais reduções nas concentrações de oxigênio dissolvido e fósforo, 

juntamente com um aumento nas concentrações de nitrogênio. Chuvas irregulares, altas temperaturas e 

evapotranspiração, combinadas com conflitos por recursos hídricos, podem agravar os problemas de acesso 

à água no semiárido, agravando a crise hídrica e ameaçando a segurança hídrica. 

Palavras-chave: modelagem hidrológica, monitoramento ambiental, clima semiárido. 

1. INTRODUCTION 

The latest report from the Intergovernmental Panel on Climate Change (IPCC) [1] highlights 

that the last four decades have been warmer than all previous decades since 1850. The IPCC 

defines climate changes as "changes in the climate over time due to natural variability and/or 
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resulting from human actions." Projected impacts of climate changes are expected to get worse 

water scarcity in arid and semi-arid regions. 

According to the National Water and Basic Sanitation Agency (ANA) [2], climate change is a 

complex and global challenge. Recent climate changes have influenced temperature and rainfall 

patterns, impacted hydrological processes and compromised water resources' availability and 

quality. This is because the effect of climate change exacerbate the vulnerability of ecosystems 

and, consequently, the population, given that the production and supply of food and energy 

contribute to the increased in greenhouse gas emissions. [3, 4].  

The Northeast region of Brazil is particularly vulnerable to climate changes and requires more 

studies on natural and anthropogenic climate changes [4]. Projections from the Brazilian Panel 

on Climate Change (PBMC) [5] indicate that Brazil is expected to become at least 3ºC warmer. 

For the Northeast region, an increase of 0.5 to 1°C in air temperature by 2040 and 1.5 to 2.5°C 

for the period 2041-2070 is anticipated.  

Projections for the Brazilian Northeast suggest a decrease of 10% to 20% in precipitation until 

2040 and a further decrease of 25% to 35% in the period 2041-2070 [5]. In regions like the 

Northeast, especially the semi-arid region, precipitation is a crucial variable influencing local 

climate conditions and the hydrological system. Changes in precipitation significantly impact 

ecosystems, human activities, and may cause more intense and frequent extreme events. The State 

of Pernambuco has around 70% of the total area with semi-arid climates and has a history of 

natural disasters linked to prolonged droughts. Between 1991 and 2010, 5,227,293 people in 

Pernambuco were affected by droughts [6].  

At the state level, the Pernambuco Water and Climate Agency (APAC) plays a pivotal role in 

implementing the State Water Resources Policy (PERH) for Pernambuco. APAC has spearheaded 

initiatives and research, leveraging technological innovations to enhance water resource 

management, exemplified using hydrological models. Furthermore, the state harnesses 

hydrological models as a crucial tool for environmental analysis, offering advantages in predicting 

and validating scenarios—whether realistic or hypothetical. This approach brings about                     

cost-efficiency and time savings, particularly in regions where observations are scant or 

inaccessible, allowing for a comprehensive understanding of both physical and anthropogenic 

changes in river basins [7]. 

In the state of Pernambuco, a significant development is the implementation and operation of 

the Hydrological Response Unit System for Pernambuco (SUPer), functioning as a vital tool for 

assessing river basins. Originating from the SWAT (Soil Water Assessment Tool) hydrological 

model, SUPer stands out as an advanced system for modeling both water quantity and quality. Its 

capabilities encompass the comprehensive evaluation of the effects of soil management, water 

pollution, and climate change on the quantity and quality of water in the state's rivers and 

reservoirs [8]. In this context, the use of modeling systems, whether static or not, positively 

influences water analyzes in the region, as well as in different river basins.  

The Terra Nova River basin, located in the semi-arid region of Pernambuco, is part of the main 

tributaries of the São Francisco River. It uses the waters of the North Axis of the São Francisco 

Integration Project (PISF), which has 7 delivery portals, 6 of which belong to the Terra Nova 

basin and are crucial for farmers and riverside families in the region. The PISF brings expectations 

of improved water security to the region, and environmental impact assessment and monitoring 

are essential [9]. 

Given the integrative role of the PISF, research on environmental monitoring and analysis 

becomes critical, especially considering the projected impacts of climate change. Developing 

studies on the effects of climate change on water quality contributes to building a solid 

information base focused on mitigating the effects of climate change on water resources, as well 

as protecting public health and fostering the socioeconomic development of the population. 

Understanding how climate projections affect the supply-demand balance for quality water is 

fundamental for planning and managing water resources to implement more effective strategies, 

thereby minimizing potential crises. Therefore, this study aims to analyze how climate change 

scenarios may impact water quality in the Terra Nova River Basin. 
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2. MATERIALS AND METHODS 

2.1 Characterization of the study area  

The Terra Nova River Basin is situated in the Sertão of Pernambuco, with an area of 

4,887.71 km², corresponding to 4.97% of the state's area (Figure 1). The drainage area of the basin 

encompasses 12 municipalities of which 3 are fully inserted in the basin (Salgueiro, Cedro and 

Terra Nova), 2 are based in the basin (Verdejante and Serrita) and 7 are partially inserted (Belém 

do São Francisco, Parnamirim, Cabrobó, Mirandiba Carnaubeira da Penha, Orocó, São José do 

Belmonte).  

 
Figure 1. Location of the Terra Nova River Basin, Pernambuco. 

Located in the northeastern semi-arid region, the watershed area presents a negative water 

balance due to average annual precipitation between 400 and 600 mm, average annual 

temperatures between 23°C and 29°C, and evaporation of 2000 mm/year. The rainy season is 

concentrated between January and April, while the dry season experiences minimal or no rainfall 

recorded from May to December [10]. 

The Intertropical Convergence Zone (ITCZ) is one of the main atmospheric systems 

influencing the semi-arid region of Pernambuco. The ITCZ is a belt of low pressure encircling 

the Earth near the equator, where the trade winds from the northern and southern hemispheres 

converge, causing intense convection and precipitation [10]. 

In the semi-arid region of Pernambuco, the ITCZ is active from December to May, bringing 

the highest rainfall rates and torrential rains, with peak precipitation occurring in March and April. 

These rains are essential for the region's water recharge, significantly contributing to water 

availability throughout the rest of the year [10]. 

The predominant soils in the Terra Nova basin are neosols, luvisols, and planosols [11]. The 

vegetation in the area consists of hyperxerophilous caatinga, featuring low trees, shrubs, and cacti. 

Concerning land use and occupation, the municipalities surrounding the basin predominantly 

engage in agriculture, with diverse crops associated with native vegetation, as well as livestock 

activities, emphasizing cattle farming, goat farming, and poultry farming [10]. 

2.2 Climate change scenarios  

2.1.1 Data collected 

Data was sourced from the National Oceanic and Atmospheric Administration (NOAA), 

covering the period from 1963 to December 2022. The entire historical series available in SUPer 
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was utilized for predicting water quality variables in this study, spanning from 1963 to March 

2021, resulting in a 58-year series. 

The selected variables included temperature (Equation 1) and precipitation (Equation 2), along 

with the parameters of dissolved oxygen (Equation 3), nitrogen (Equation 4), and phosphorus 

(Equation 5). The equations used for estimation are as follows: 

 

𝑇ℎ𝑟 =  𝑇𝑎𝑣 + 
(𝑇𝑚𝑥 −𝑇𝑚𝑛)

2
.𝑐𝑜𝑠 𝑐𝑜𝑠 (0.2618. (ℎ𝑟 − 15))                          (1) 

  

Where, 𝑇ℎ𝑟it is the air temperature during the ℎ𝑟day (°C), 𝑇𝑎𝑣it is the average temperature 

during the day (°C), 𝑇𝑚𝑥it is the maximum daily temperature (°C) and 𝑇𝑚𝑛It is the minimum daily 

temperature (°C). 

𝑅𝑑𝑎𝑦 =  𝜇𝑚𝑜𝑛 + 2. 𝜎𝑚𝑜𝑛. (
[(𝑆𝑁𝐷𝑑𝑎𝑦−

𝑔𝑚𝑜𝑛
6

).(
𝑔𝑚𝑜𝑛

6
)+1]

3
−1

𝑔𝑚𝑜𝑛
)                         (2) 

 

In which 𝑅𝑑𝑎𝑦consists of the amount of rain on a given day (mm), 𝜇𝑚𝑜𝑛is the average daily 

precipitation (mm) for the month, 𝜎𝑚𝑜𝑛is the standard deviation of daily precipitation (mm) for 

the month, 𝑆𝑁𝐷𝑑𝑎𝑦is the normal standard deviation calculated for the day and 𝑔𝑚𝑜𝑛is the 

asymmetric coefficient for daily precipitation in the month. 

 

𝑂𝑥𝑠𝑢𝑟𝑓 =  𝑂𝑥𝑠𝑎𝑡 − 𝐾1. 𝑐𝑏𝑜𝑑𝑠𝑢𝑟𝑞 .
𝑡𝑜𝑣

24
                                       (3) 

 

Where, 𝑂𝑥𝑠𝑢𝑟𝑓is the concentration of dissolved oxygen in the surface flow (mg L-1 ), 𝑂𝑥𝑠𝑎𝑡is 

the saturation oxygen concentration (mg L-1), 𝐾1is the CBOD deoxygenation rate (day¹), 

𝑐𝑏𝑜𝑑𝑠𝑢𝑟𝑞is the concentration of CBOD in the flow surface (mg L-1) and 𝑡𝑜𝑣is the surface runoff 

concentration time (hr). 

 

∆𝑜𝑟𝑔𝑁𝑠𝑡𝑟 =  (𝛼1 . 𝜌𝑎 . 𝑎𝑙𝑔𝑎𝑒 −  𝛽𝑁, 3 . 𝑜𝑟𝑔𝑁𝑠𝑡𝑟 −  𝜎4 . 𝑜𝑟𝑔𝑁𝑠𝑡𝑟). 𝑇𝑇                           (4) 

 

Where, ∆𝑜𝑟𝑔𝑁𝑠𝑡𝑟 is the nitrogen concentration (mg L-1), 𝛼1 is the fraction of algal biomass 

that is nitrogen (mg N mg algal biomass), 𝜌𝑎 is the death or local algae respiration rate (day or 

hr), 𝑎𝑙𝑔𝑎𝑒 is the concentration of algal biomass at the beginning of the day (mg algal L-1), 𝛽𝑁,3 

is the coefficient of the nitrogen hydrolysis rate for ammonia (day or hr), 𝑜𝑟𝑔𝑁𝑠𝑡𝑟 is the 

concentration of organic nitrogen at the beginning of the day (mg L-1), 𝜎4 is the coefficient of the 

rate for nitrogen settling (day or hr), and TT is the flow residence time in water (day or hr). 

 

∆𝑜𝑟𝑔𝑃𝑠𝑡𝑟 =  (𝛼2 . 𝜌𝑎 . 𝑎𝑙𝑔𝑎𝑒 −  𝛽𝑃, 4 . 𝑜𝑟𝑔𝑃𝑠𝑡𝑟 . 𝜎5 . 𝑜𝑟𝑔𝑃𝑠𝑡𝑟) . 𝑇𝑇            (5) 

 

In which, ∆𝑜𝑟𝑔𝑃𝑠𝑡𝑟 is the phosphorus concentration (mg L-1), 𝛼2 is the fraction of algal 

biomass that is phosphorus (mg P mg algal biomass), 𝜌𝑎 is the local respiration or death rate of 

algae (day or hr), 𝑎𝑙𝑔𝑎𝑒 is the concentration of algal biomass at the beginning of the day 

(mg algal L-1), 𝛽𝑃,4 is the coefficient of the rate of organic phosphorus mineralization (day or hr), 

𝑜𝑟𝑔𝑃𝑠𝑡𝑟 is the concentration of phosphorus at the beginning of the day (mg L-1), 𝜎5 is the 

coefficient of the rate for settling of organic phosphorus (day or hr), and TT is the flow residence 

time in water (day or hr). 

2.1.2 Simulation of Climate change scenarios  

SUPer also facilitates the analysis of the historical series of the variables through the Climate 

Sensitivity/Variability Analysis tool. This section allows the adjustment of precipitation and/or 

temperature values for the selected river basin. Precipitation can be modified as a percentage, 
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while temperature can be adjusted using values in degrees Celsius (°C). For this study, climate 

change scenarios from the literature were employed to assess their potential impacts on water 

quality parameters, specifically dissolved oxygen, nitrogen, and phosphorus. The utilized 

scenarios are presented in Table 1. 

Table 1. Climate change scenarios used to analyze the interference of climate change in the historical 

series of parameters 

SOURCE Temperature increase Precipitation Reduction 

IPCC (Scenario 1 - C1) + 3°C - 22% 

FIOCRUZ (Scenario 2 - C2) + 3°C - 39% 

     Source: IPCC (2022) [1], Fundação Oswaldo Cruz (2022) [12]. 

2.1.3 Proposal of future water quality scenarios   

The prediction of water quality parameters serves as a vital tool for planning and decision-

making in water resources [13]. In this study, to fulfill this objective, the ARIMA (Autoregressive 

Integrated Moving Averages) methodology was employed [14], recognized for its application in 

modeling and forecasting time series, particularly in the analysis of hydrological variables [15]. 

The ARIMA (p, d, q) model has the following form: 

 

 ∅(𝐵)(1 − 𝐵)𝑑𝑍𝑡 =  𝜃(𝐵)𝜀𝑡
                                                   (6) 

                  

Where, ∅and 𝜃are, respectively, autoregressive and moving averages, 𝜀𝑡is described as white 

noise and d is the order of integration, number of differences necessary to make the series 

stationary. 

Following the Box-Jenkins approach, Seasonal Autoregressive Integrated Moving Averages 

(SARIMA) models were developed, considering seasonality, a common characteristic in 

hydrological parameters [13, 16]. 

The SARIMA (p, d, q) (P, D, Q) model is given by: 

 

 ∅(𝐵)𝛷 (𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑆 )𝐷𝑍𝑡 =  𝜃(𝐵)𝛩(𝐵)𝜀𝑡
                                                                       (7) 

 

Where, p, d, q are orders of the model referring to ordinal dynamics, while P, D, Q, are 

referring to the seasonal part of the model, and are autoregressive and ordinal moving averages, 

and and ∅are 𝜃autoregressive 𝛷parameters 𝛩and of seasonal moving averages. 

Short-term forecasts aim to ensure the effective operation of water resources, considering their 

diverse uses [17]. Moreover, higher accuracy rates were observed for SARIMA modeling in short-

term forecasts [18]. Therefore, in this study, data were predicted up to 2024. 

Initially, CO2 values were forecasted until the year 2024. Subsequently, a model was 

developed to predict the available SUPer time series until December 2022, utilizing the CO2 data 

available up to that period. For the prediction, dependent and independent variables were 

established for the model, as presented in Table 2.  

Table 2. Dependent and independent variables analyzed. 

Independent variables Dependent variables 

CO2 Dissolved Oxygen 

Temperature Nitrogen 

Precipitation Phosphorus 
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2.1.3 Model evaluation criteria  

Primarily, a descriptive analysis of the analyzed data was conducted, yielding mean values, 

standard deviation, minimum and maximum values. To assess the created models, R² and RMSE 

statistics were employed. R², also known as the Coefficient of Determination, gauges how well 

the predicted value aligns with the observed value. The closer the value is to one, the better the 

model's fit. 

RMSE (Root Mean Square Error) serves as a statistical metric for evaluating model 

performance in environmental studies. The calculation is based on the square root of the average 

of the squared errors between the observed and predicted values, as per equation 8. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ ⬚𝑛

𝑖=1 (𝐸𝑖 − 𝑂𝑖)²                                                            (8) 

    

Where: E i and O i are the estimated and observed (measured) values, respectively, and n is the 

number of observations. 

3. RESULTS AND DISCUSSION 

3.1 Analysis of the behavior of the historical water quality series 

To enhance comprehension of the variables under study, descriptive measurements of the 

historical series, spanning from January 1963 to March 2021 and available on SUPer, were 

undertaken for dissolved oxygen, nitrogen, and phosphorus, considering the applied climate 

change scenarios. Scenario 1 (C1) involved a 3°C temperature increase and a 22% precipitation 

reduction [1]. In Scenario 2 (C2), the temperature increased by 3°C, accompanied by a 39% 

reduction in precipitation [12]. Subsequently, the climate change scenarios were implemented, 

and corresponding graphs with trend lines were generated. 

The National Environmental Council (CONAMA), in its resolution 357 [19], designates Class 

2 for water bodies without classifications, as observed in the state of Pernambuco, where the 

dissolved oxygen (DO) must exceed 5 mg L-1. A reduction in the global average and maximum 

values of Dissolved Oxygen (OD) can be observed, transitioning from 6.81 mg L-1 and                       

8.82 mg L-1, respectively, in the reference scenario, to 6.67 mg L-1 and 6.65 mg L-1 (average), and 

8.44 mg L-1 and 8.42 mg L-1 (maximum value) for scenarios with alterations in temperature and 

precipitation. However, despite climate change, it is evident that the historical series' average 

remains within the limits set by CONAMA. 

In comparison to the reference scenario, devoid of climate variations, all scenarios exhibit a 

reduction in DO values. The scenario without climate change alterations manifests 518 months 

with values surpassing 5 mg L-1. In scenario 1 (Appendix A), out of the 699 months analyzed, 

499 data points recorded values exceeding 5 mg L-1. Moving to scenario 2 (Appendix B), the DO 

values remained within the established limits for 478 months. 

For the nitrogen variable, CONAMA Resolution 357 [19] stipulates that the permitted 

concentration should not exceed 1.27 mg L-1. An increase in the average concentration of the 

series can be observed, escalating from 2.66 mg L-1 to 3.99 mg L-1 and 4.38 mg L-1. A similar 

trend is observed for the maximum values, surging from 10.19 mg L⁻¹ in the unchanged scenario 

to 12.80 mg L-1and 13.47 mg L-1 in the climate change scenarios. Consequently, in both climate 

change scenarios, nitrogen concentrations exceeded the prescribed limit. 

In the case of the nitrogen variable, an increase in concentration was observed across all 

scenarios, as depicted in Appendices C and D. In the reference scenario, out of the 699 months, 

468 falls within the acceptable limits for freshwater Class 2. Scenario 1 (Appendice C) reveals 

that, within the entire historical series analyzed, 439 months align with the established limits. 

Similarly, in scenario 2 (Appendix D), 447 months exhibit values in accordance with the 

regulatory resolution. 

In adherence to CONAMA (2005) [19], the concentration of total phosphorus must not exceed 

0.10 mg L-1. However, in this study, all averages surpassed the limit proposed by the resolution, 
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registering values of 0.40 mg L-1 for the reference scenario, and 0.37 mg L-1 and 0.31 mg L-1 for 

the scenarios with climate change. Regarding the maximum values, an upward trend is evident, 

escalating from 5.78 mg L-1 in the unchanged scenario to 6.98 mg L-1 and 7.41 mg L-1 with 

increasing temperature and decreasing precipitation. 

In the case of total phosphorus, a marginal reduction is observed for this variable in the applied 

scenarios, as depicted in Appendices E and F. In the scenario without climate change, out of the 

699 months, 434 falls within the limits established by legislation. Shifting to scenario 1 (Appendix 

E), 485 months of the historical series analyzed remained within the prescribed limits. Meanwhile, 

in scenario 2 (Appendix F), 521 months in the series comply with the legislation. 

Climate change can have profound effects on aquatic ecosystems, posing risks to both the 

environment and the human population. Elevated temperatures and alterations in precipitation 

patterns can contribute to the deterioration of water quality. Temperature, a critical factor, 

influences various physical, chemical, and biological processes in water bodies, affecting 

biological activity and oxygen absorption rates [20]. Increased temperatures often result in 

decreased dissolved oxygen (DO) levels, a phenomenon particularly notable in tropical lakes 

compared to temperate lakes [21]. Consequently, climate-induced temperature increases are likely 

to lead to reduced DO levels in ecosystems. 

The concentration of organic matter, coupled with high temperatures, exacerbates water 

deoxygenation, especially in shallow lakes common in Brazil. Shallow lakes, affected by 

variations in water levels during the rainy season, experience periodic reductions in oxygen levels. 

This deoxygenation, combined with organic matter, contributes to elevated nitrogen and 

phosphorus concentrations in the water [21, 22]. 

Nitrogen and phosphorus act as limiting nutrients for primary productivity and the growth of 

algae and macrophytes. Concentrations as low as 0.01 mg L-1 are sufficient for phytoplankton 

maintenance, while levels between 0.03 and 0.10 mg L-1 can lead to unrestrained growth, 

contributing to ecosystem eutrophication [21]. There is a direct relationship between phosphorus 

distribution in the water column and dissolved oxygen concentrations [21]. Hence, periods of 

lower dissolved oxygen coincide with increased phosphorus and nitrogen concentrations. 

Given these complexities, continuous monitoring of water bodies becomes crucial for 

obtaining information about water quality and quantity. This is essential for addressing the diverse 

needs of a region. Such monitoring not only enables the adoption of measures to control and 

manage water resources but is particularly vital in regions, like the Brazilian semi-arid area, where 

water security is integral to social and economic development. Effective water resource 

management requires institutional organization, robust legislation, and technological support for 

substantial advancements, ensuring reliable and consistent data on water resource quality [22]. 

3.2 Prediction of future water quality scenarios 

Emissions of greenhouse gasses (GHGs) resulting from human activities have experienced a 

substantial increase since the Industrial Revolution, leading to alterations in climate systems, 

global average temperatures, and sea levels [23]. The sixth IPCC report [1] highlights that 

between 2010 and 2019, greenhouse gas emissions, predominantly CO2, reached unprecedented 

levels in human history, contributing significantly to the global rise in temperatures. Brazil, being 

among the top ten global emitters, has committed to reducing GHG emissions. 

Global warming has the potential to alter precipitation patterns across various regions, 

characterized by reduced rainfall volumes and an increased frequency of drought events [4]. The 

well-being of populations is intricately linked to climate variability. Hence, the development of 

models for climatic and hydrological variables, enabling the prediction of future climate and water 

resource conditions [24], becomes imperative for crafting public policies aimed at mitigating the 

impacts of climate change. This is particularly crucial for water resource management in regions 

already grappling with water crises, such as the Brazilian Northeast. 

During this study, the initial phase involved modeling CO2 values up to 2024 using NOAA 

data available until December 2022. The model achieved an R² of 1.00, with a RMSE of 0.31 ppm. 

The graphical representation (Figure 2) illustrates a discernible upward trend in CO2, peaking at 
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425.56 ppm in May 2024. A parallel study conducted across the state of Pernambuco developed 

a CO2 model projecting values exceeding 430 ppm by the year 2027 [8]. 

 
Figure 2. CO2 modeling until the year 2024. 

Subsequently, the CO2 model was used to simulate temperature and precipitation variables, 

correlating them with the analyzed water quality parameters, namely, dissolved oxygen, nitrogen, 

and phosphorus. For temperature and precipitation, numerous studies project an increase in the 

occurrence of extreme events, such as droughts or intense precipitation, along with an increase in 

drier and hotter days [24]. Future scenarios were simulated for the Brazilian Northeast until the 

year 2099 [25]. The authors observed a long-term temperature increase ranging from 2.1°C to 

4°C, coupled with reduced precipitation and increased evapotranspiration, suggesting a trend 

toward increased aridity in the region. 

For temperature, a historical average of 28.14°C was identified, with a predicted monthly 

average temperature reaching a maximum value of 28.80°C in November 2024, while the 

minimum predicted value was 25.03°C in June 2023. The SARIMA model (3,0,3) (0,1,1) proved 

to be the most accurate for temperature prediction, with an R² of 0.79 and RMSE of 0.64°C. 

Similar results were obtained in a time series analysis for monthly minimum and maximum 

temperatures in Rio Grande do Sul, using SARIMA [26]. The authors forecasted the variables for 

both three and six months, revealing lower RMSE values in the shorter-term predictions. They 

obtained values of 1.41 °C and 2.70 °C for minimum temperatures over three and six months, 

respectively. As for maximum temperatures, the corresponding values were 0.13 °C and 0.57 °C 

for three and six months, respectively. 

In the current investigation, a trend towards higher average temperatures, ranging between 

25°C and 28°C, has been discerned, as illustrated in Figure 3. This aligns with findings in a study 

developed through projection models covering the temperature of the Brazilian Northeast from 

2016 to 2099, where a consistent temperature increase throughout the predicted series was found 

[27]. Additionally, another study issued warnings based on projections, indicating a potential 

increase of up to 2°C in northeastern Brazil's temperature by 2050 [28]. Such a temperature rise 

is anticipated to intensify evaporation and evapotranspiration, exerting negative impacts on water 

volumes in the region's reservoirs. 
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Figure 3. Temperature prediction until 2024. Source: Authors. 

In terms of precipitation, the historical average was 30.09 mm, with the highest predicted 

monthly value of 84.46 mm, identified in March 2022, and the lowest value of 1.83 mm, for 

September 2024. The SARIMA model for precipitation was (1,0,0) (1,0,1), with an R² of 0.76 

and an RMSE of 41.92 mm. The SARIMA (1,1,1) (0,1,1) model was utilized to predict average 

monthly temperatures for the northeastern semi-arid region, projecting future scenarios from 

March 2009 to March 2012 [29]. The historical series presented an average of 25.18 °C, while for 

the three years predicted, the average temperature was 25.71 °C. In a study conducted in the city 

of Rondonópolis (MT), the SARIMA (2,0,0) (0,1,2) model was applied to analyze precipitation 

series, identifying RMSE values for the model of 66.16 mm, indicating good adjustments to the 

data series [15]. 

As depicted in Figure 4, a trend towards a reduction in rainfall volumes for the region is 

evident, supporting studies in the state of Pernambuco [6, 27]. These studies demonstrated a 

downward trend in annual precipitation, with a higher likelihood of occurrences during periods 

of severe drought and drought [28]. In a study that analyzed trends in climate change in rainfall 

in the Pernambuco river basins, a decreasing in rainfall trends for the Terra Nova River Basin was 

observed [30]. 

 
Figure 4. Precipitation prediction until the year 2024. 

Predicting the behavior and conditions of water bodies is an important tool for proposing 

measures to combat pollution in these ecosystems, in addition to avoiding environmental 

problems, such as the eutrophication of reservoirs. Several studies have applied ARIMA modeling 

to analyze water bodies, such as for evaluating and predicting the volume of groundwater [31], in 

the volumetric analysis of reservoirs [32], to predict flows [16, 17], in predicting drinking water 

consumption in cities [33], in addition to the analysis of rainfall patterns [34], however, studies 

on ARIMA modeling applied to the prediction of water quality parameters are still scarce, 

especially for the Brazilian Northeast. 
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The prediction of water quality parameters was conducted by establishing correlations 

between temperature and precipitation variables. For dissolved oxygen, the historical average was 

6.38 mg L-1, with a predicted concentration range between 0.82 mg L-1 and 8.39 mg L-1. Regarding 

nitrogen, the historical average value was 3.78 mg L -1, with values ranging from 0.09 mg L-1 to 

3.71 mg L-1. Phosphorus had a historical average of 0.96 mg L-1, with a variation range between 

0.20 mg L-1 and 1.10 mg L-1. Figures 5, 6, and 7 illustrate graphs of the predicted time series for 

dissolved oxygen, nitrogen, and phosphorus. 

 
Figure 5. Prediction of dissolved oxygen until the year 2024. 

 

Figure 6. Nitrogen prediction until the year 2024.  

Figure 7. Phosphorus prediction until 2024. 

In the state of Pernambuco, water bodies have not been officially classified, prompting the 

State Environmental Agency of Pernambuco (CPRH) to utilize the parameters of freshwater class 
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2 as outlined in Resolution 357 of CONAMA [19]. Examining the predicted water quality over 

the period from April 2021 to December 2024 (45 months), it was observed that, in just 8 months, 

dissolved oxygen values fell below 5 mg L-1, aligning with the legislation but displaying a 

decreasing trend. Similar results were obtained in a current study in a 12-month prediction for 

dissolved oxygen, indicating that the predicted values remained within the limits while exhibiting 

a tendency towards reduced DO concentrations [35]. 

Concerning nitrogen, out of the 45 predicted months, this variable complied with the                     

1.27 mg L-1 limit in 29 months, showing an increasing trend in concentrations. For phosphorus, 

within the predicted 45 months, concentrations adhered to the proposed 0.10 mg L-1 limit in 

19 months, with a tendency to decrease. However, it is noteworthy that the highest predicted 

concentrations of nitrogen and phosphorus occurred during the rainy season, spanning the months 

of January to April. The ARIMA methodology was utilized to predict nitrogen and phosphorus 

concentrations in northeast China, identifying an increase in nitrogen concentrations, while 

variations in phosphorus were not significant [36]. 

Table 3 outlines the SARIMA models for each water quality variable, along with the 

evaluation criteria for each model. 

Table 3. SARIMA model and R² and RMSE values for each variable 

Variable SARIMA model R² RMSE 

Dissolved oxygen (mg L-1 ) (2,0,0) (2,0,1) 0.59 1.94 

Nitrogen (mg L-1 ) (0,0,1) (0,1,1) 0.59 1.07 

Total Phosphorus (mg L-1 ) (0,0,1) (1,0,1) 0.56 0.31 

A hybrid model utilizing the ARIMA model was devised to forecast water quality parameters, 

including dissolved oxygen, in the Beijing region for a one-month period [37]. The model 

achieved a quality level of approximately 97%, with an R² of 0.94 and an RMSE of 0.58 mg L-1 

for dissolved oxygen (OD). In comparison, the present study yielded an R² of 0.59 and an RMSE 

of 1.94 mg L-1 for OD. The authors noted the applicability of the model to other reservoirs in the 

region but emphasized its stronger performance in short-term predictions, with less satisfactory 

outcomes over an extended period. 

A hybrid model employing ARIMA and Neural Networks was developed to predict nitrogen 

and phosphorus concentrations in northeast China [36]. The RMSE values for nitrogen were 

0.139 mg L-1 and 0.036 mg L-1 for phosphorus. In contrast, the current study obtained higher 

RMSE values, registering 1.07 mg L-1 for nitrogen and 0.31 mg L-1 for phosphorus. SARIMA 

modeling was applied to predict nitrogen, achieving more robust forecasts for the initial three 

months with confidence levels of 96%, declining to 82% for the six-month period, and no solid 

models were identified for 12-month forecasts [18]. The SARIMA model for nitrogen was (2,1,2) 

(1,0,1), with an R² of 0.51 and a concentration range between 0.8 mg L-1 and 4.1 mg L-1, aligning 

with the current study where the R² for nitrogen was 0.59, with a series average of 3.78 mg L-1. 

Other studies have assessed the performance of time series models (ARIMA and SARIMA) 

for predicting water quality in water bodies, obtaining satisfactory results [38, 39]. Consequently, 

the modeling and prediction of water quality parameters emerge as vital tools for water resources 

management and control. These models can aid in planning, managing, and predicting the impacts 

of changes in aquatic ecosystems, contributing to the formulation of public policies to ensure 

water security [40]. 

4. CONCLUSION 

The examination of historical series behavior in response to climate change, utilizing data from 

reputable sources such as the IPCC and Fiocruz to model water quality parameters, emerges as a 

viable strategy for water resource management in the Brazilian semi-arid region. The 
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compounding factors of climate change, characterized by inadequate or minimal rainfall coupled 

with elevated temperatures and increased evapotranspiration rates, combined with ongoing 

conflicts over diverse water resource uses, can potentially lead to a severe crisis. This crisis poses 

heightened vulnerability to populations inhabiting the semi-arid region. The SUPer software, with 

its broad applicability, proves indispensable for public institutions dealing with water availability 

and quality analysis—a recurrent challenge in the state of Pernambuco. 

The application of SARIMA modeling to predict water quality parameters demonstrated 

satisfactory outcomes, aligning favorably with findings from comparable studies. The results 

obtained from the SUPer historical series analysis scenarios support the trends modeled through 

the SARIMA methodology. Notably, concentrations of dissolved oxygen and phosphorus exhibit 

decreasing trends, while nitrogen concentrations show an upward trajectory. 

It is imperative to acknowledge that simulating water quality variables presents significant 

challenges due to uncertainties linked to the considerable variability in precipitation and 

temperature, along with other parameters influencing dissolved oxygen, nitrogen, and phosphorus 

concentrations. Consequently, the ongoing on-site monitoring is essential for refining existing 

models and developing new ones. This collaborative effort contributes to the formulation of 

effective public policies, specifically addressing the equitable distribution of water in terms of 

both quantity and quality. 
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APPENDIX 

Appendix A - Comparison between the behavior of the historical series with the unchanged scenario, in 

blue, and C1, in green, for dissolved oxygen 

 

Appendix B - Comparison between the behavior of the historical series with the unchanged scenario, in 

blue, and C2, in green, for dissolved oxygen 

 

 

Appendix C - Comparison between the behavior of the historical series with no change scenario, in blue, 

and C1, in green, for nitrogen 

 

 

Appendix D - Comparison between the behavior of the historical series with no change scenario, in blue, 

and C2, in green, for nitrogen
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Appendix E - Comparison between the behavior of the historical series with a no-change scenario in 

blue, and C1, in green, for phosphorus 

 

 

Appendix F - Comparison between the behavior of the historical series with the unchanged scenario, in 

blue, and C2, in green, for phosphorus 

 


