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As baixas temperaturas encontradas em águas submarinas combinadas com o transporte de hidrocarbonetos 

em linhas de produção provocam o problema de deposição de sólidos no interior das mesmas, 

principalmente de parafinas e hidratos, que consistem em um considerável problema para a indústria do 

petróleo. Para superar este problema, a simulação computacional demonstra-se um aliado. Entretanto, estas 

simulações podem ser computacionalmente custosas tornando seu uso inapropriado. Nestes casos, 

metamodelos, que são modelos mais baratos do ponto de vista computacional, podem ser uma alternativa. 

O presente artigo propõe o uso de uma Rede de Estado de Eco como modelo substituto para o problema de 

resfriamento de fluido de produção estagnado em um sistema pipe-in-pipe submarino munido de 

aquecimento elétrico ativo. O metamodelo implementado mostra-se ser até vinte e quatro vezes mais rápido 

quando comparado ao Método dos Volumes Finitos, embora este tenha demonstrado correlações 

consistentes para todos os lags quando uma análise de auto correlação foi performada. 

Palavras-chave: metamodelagem, simulação computacional, garantia de escoamento. 

 

The low temperatures found in subsea water combined with the transport of hydrocarbons in flowlines that 

are immersed in this environment brings the problem of solid deposition inside the flowlines, mainly of 

paraffin and hydrates, which consists of considerable problems to the petroleum industry. To overcome this 

issue, computational simulation might be an ally. However, such simulations sometimes can be 

computationally demanded, making their use unpractical. In these cases, metamodels, which are 

computationally cheaper models, can be an alternative. The present paper proposes using an Echo State 

Network as a surrogate model for the problem of stagnant production fluid cooling in a subsea pipe-in-pipe 

system with active electric heating. The implemented metamodel shows to be twenty-four times faster than 

the Finite Volume Method, although it showed consistent correlations for all lags when a residual 

autocorrelation analysis was performed. 

Keywords: metamodeling, computational simulation, flow assurance. 

1. INTRODUCTION  

Petrobras conceived the term flow assurance in 1990 decade [1], which refers to ensuring 

successful and economical flow of hydrocarbon stream from the reservoir to the sales or storage 

points [2]. The more critical aspect of this definition is the conduction of these hydrocarbons from 

the reservoirs to the collection facilities [1]. 

Among the issues that need to be considered about the flow of hydrocarbons is the solid 

deposition, including paraffins and hydrates. The low temperatures encountered in depths 
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between 1500 m and 3000 m are between 274.15 K and 277.15 K make even worse the process 

of these deposits in the context of offshore exploration [3].  

When considering production pipes, the difference in temperature between the production 

fluid and the pipe wall gives origin to a radial temperature gradient and a concentration gradient 

in the same direction once wax solubility is temperature dependent. This solubility gradient allows 

mass transport from the center of the pipes to the wall [4]. Once the paraffin reaches the regions 

near the wall, it finds temperatures lower than the wax appearance temperature, which starts the 

process of wax deposition. Another problem that might be found is the problem of aging which 

is the phenom in which the paraffin deposit hardens with time. Such phenom is due to the internal 

temperature gradient, which promotes a concentration gradient that leads to internal diffusion of 

paraffin molecules through the trapped solvent in between the incipient gel layer [5]. 

Gas clathrate is a solid solution in which water molecules are linked to each other by hydrogen 

bonding, forming cavities called host lattices that enclose several varieties of guest molecules. 

There is no chemical bonding between the water molecules and the guest molecules. The clathrate 

hydrate crystals may exist in temperatures below or above the water freezing point and may form 

deposits [6]. Solid deposits may lead to significant financial losses because these can form 

blockages to the hydrocarbon flow [3]. So, these are considered a massive problem in petroleum 

exploration. 

To mitigate the problem of hydrates and paraffin deposition, pipe-in-pipe comes as a solution 

[7]. It consists of two concentrical pipes in which the annular space is filled with insulating 

material. The inner pipe transports the production fluid while the external provides mechanical 

protection [8]. Also, to mitigate the already cited deposition problems, active electrical heating 

associated with pipe-in-pipe may be used. In active electric heating, the heat is generated by 

applying an electrical current through some conductive element. It may be classified as direct 

electric heating, when the current flows through the inner pipe, or indirect electric heating, when 

the current flows through conductive material, like wires [9] in such a way that, in both cases, the 

generated heat is transferred to the production fluid.  

Also, in the mitigation of the cited deposition problems, the computational simulation might 

be a great ally because, through it, it is possible to estimate variables associated with the heat 

transfer process that cannot be measured to implement strategies associated with the predictive 

control model given the mitigation of paraffin and hydrates deposition through monitoring. 

However, these are just possibilities and are not part of this paper’s scope. Notwithstanding, some 

computational simulations may have a high computational burden taking a long time to be 

evaluated. So, to overcome these issues, metamodels, also called surrogate models, may be used 

[10]. 

2. METAMODELING  

The use of computational simulations is a widespread issue in engineering practice. In 

chemical engineering, for example, it may include modeling of chemical production processes or 

complex thermodynamics. Nonetheless, because of the complexity of the studied phenomena, 

these simulations may be of high computational cost in such a way that simulations take many 

hours to be accomplished, making their use unpractical. Therefore, metamodels may be applied 

to reduce computational costs [10].  

A metamodel is a mathematical model that map or regresses, the input-output relationships of 

a more complex, computationally demanding model [10]. That is, metamodels are less costly 

mathematical models that approximate some costly objective function and use it instead, or even 

together, with the computationally demanding model. 

In general way, to construct a metamodel, first needed to determine a design of experiments, 

proceed with the numerical simulations at the points given by the design of experiments, and so, 

use the obtained data to construct the metamodel. Once it is done, the metamodel needs to be 

assessed. If necessary, one might go back to the design of experiments step [11].  

There are several techniques to construct a metamodel such a way in [12] are listed            

twenty-eight different metamodeling techniques, the most common polynomial regression, 
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moving least squares, radial basis function, kriging regression, support vector regression, and 

artificial neural network [13].  

Achieving an accurate surrogate model demands adequate input and output data. Given the 

cost of experimental work, training points are often generated through precise numerical 

simulations that consider several parameters for an observation, which can require considerable 

computation time [14, 15]. Concerning the computational costs, recently, surrogate models was 

used to optimize the design of aerodynamic shapes, significantly reducing the computational 

effort required for each design evaluation [16]. An application to the use of Gaussian process 

surrogate models for uncertainty analysis in environmental models and demonstration of the use 

of surrogate models for real-time control in robotics, enabling faster and more efficient control 

actions [17, 18]. Qui et al. (2022) [19] compared a surrogate model with a commercial simulator 

for pipeline gas transport, producing result with high accuracy, below 6%, and CPU cost 1250 

times faster than LedaFlow software. This approach could be beneficial when large amount of 

simulations runs is required, like inverse problems, where stochastic and recursive algorithms, 

like Monte Carlo method, are used to estimation of states and parameters.  

Using finite element analysis, Mentani et al. (2023) [20] developed metamodels to predict the 

tensile capacity and secant stiffness of steel piles driven in the sand. The metamodels were based 

on robust finite element models and evaluated with full-scale test data. The results showed that 

these metamodels provided highly accurate results in several soil-stake configurations, avoiding 

the complexity and computational cost of finite element models. Furthermore, the authors suggest 

using the model applied in statistical analysis to deal with variability and uncertainties in 

foundation problems, especially in offshore environments. Sebastjan et al. (2023) [21] studied the 

application of metamodels in the adjustment of optimization algorithm parameters associated with 

the nonlinear buckling phenomenon of the automotive shock absorber. To solve the direct 

problem, the authors used a commercial finite element simulation application. In addition, they 

employed a surrogate model that reproduces the behavior of real simulation of nonlinear finite 

elements. This surrogate model was used to significantly reduce the simulation time, allowing the 

study of numerous combinations of algorithm parameters and the performance of adjustments. 

The results of this study indicate that the use of metamodels can improve the performance of 

optimization algorithms. 

In studies carried out by Li et al. (2022) [22], a neural network was used as a substitute model 

to simulate reactive transport modeling (RTM) based on processes that integrate thermodynamic 

and kinetically controlled fluid-rock interactions, considering the flow of fluid through porous 

media in the underground and surface environment. The results reveal that the duly trained 

surrogate model proved particularly advantageous when several executions are required, such as 

in sensitivity analysis or model calibration, allowing a significant reduction in computational time 

compared to that needed for the RTM. Im et al. (2021) [23] proposed a practical framework for 

the surrogate modeling of a large-scale elasto-plastic finite element (FE) model, using long     

short-term memory neural networks combined with adequate orthogonal decomposition. The 

results show that the proposed substitute models proved computationally efficient and accurate in 

predicting elastic-plastic responses. 

3. ARTIFICIAL NEURAL NETWORKS 

An Artificial neural network is an information-processing paradigm inspired by the way 

biological nervous systems such as the brain process information, that is, a way of processing 

information based on biological nervous systems. The artificial neural networks are formed by 

several processing elements called, by analogy, neurons that are linked by weighted connections 

[24]. 

 Each of the neurons has a linear combinator that sums the input values multiplied by its 

weights. The value obtained by the linear combination is summed to a value called bias. The 

obtained value passes through an activation function consisting of the neuron’s output [25]. 

Mathematically: 
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𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑛
𝑖=1      (1) 

 

𝜐𝑘 = 𝑢𝑘 + 𝑏𝐾          (2) 

 

𝑦𝑘 = 𝜑(𝜐𝑘)             (3) 

 

In Eq. 1 to 3, 𝑢𝑘 denotes the output of the linear combinator, 𝑤𝑘𝑗 the weight of the j-th input 

associated to the k-th neuron, 𝑥𝑗 the value of the j-th input, 𝜐𝑘 the activation potential, 𝑏𝑘the bias 

associated to the k-th neuron, 𝑦𝑘 the output of the k-th neuron and 𝜑 the activation function [25]. 

There are several kinds of neural networks that differs from each other because of its topology 

such as back propagation, radial basis function and cerebella model articulation controller [26]. 

However, in this work, the focus is on Echo State Networks.  

4. ECHO STATE NETWORKS 

Echo State Networks are well suited tool to solving temporal series, regression or forecasts 

[27]. ESNs were used, for example, in the classification of insulators based on the ultrasound 

signal [28], in the monitoring and detection of failures in industrial processes [29], and as a 

metamodel of the dynamic instability of the casing heading as a predictive control strategy for a 

gas lift well [30]. The ESN is a recurrent neural network with three layers: the input layer, the 

reservoir layer, and the output layer. The reservoir layer includes hundreds or thousands of 

sparsely and recursively connected neurons [31].  

The synaptic weights between the input layer and the reservoir, so as the weights of the 

reservoir are initialized randomly and remain fixed during training, that is, they remain the same 

along the training phase such a way that are trained only the weights between the reservoir and 

the output layer which are obtained by a linear regression [32]. The activation of internal units 

and the output units are updated according to [33]: 

 

𝒙(𝑛 + 1) = 𝑓 (𝑾𝒙(𝑛) + 𝑾𝒊𝒏𝒖(𝑛 + 1))    (4) 

 

𝒚(𝑛 + 1) = 𝑓𝑜𝑢𝑡(𝒖(𝑛 + 1), 𝒙(𝑛 + 1))         (5) 

 

In above equations  𝑓 is an element-wise application of the activation function; 

(𝒖(𝑛 + 1), 𝒙(𝑛 + 1)) is a vector concatenated from 𝒖(𝑛 + 1) and 𝒙(𝑛 + 1); 𝑓𝑜𝑢𝑡 is the 

activation function in output; 𝑾 is the internal connection weights matrix; 𝑾𝒊𝒏 is the matrix of 

weight connections from the input unit into the network and 𝑾𝒐𝒖𝒕 is the output weights matrix 

[33]  

In the activation of internal units equation, an optional feedback may be used in which case 

the equation becomes [34]: 

 

𝒙(𝑛 + 1) = 𝑓 (𝑾𝒙(𝑛) + 𝑾𝒊𝒏𝒖(𝑛 + 1) + 𝑾𝒃𝒂𝒄𝒌𝒚(𝑛))    (6) 

 

Where 𝑾𝒃𝒂𝒄𝒌 is the feedback weights matrix and 𝒚(𝑛) is the output activation vector. Optional 

noise is also an option [34]. A complete review of designs and application of Echo State Networks 

could be found in [35]. 

5. PHYSICAL PROBLEM FORMULATION 

Consider a condition in which production fluid is stagnant inside a pipe-in-pipe with direct 

electric heating flowline. Because of the temperature difference between the production fluid and 

the environment, heat is conducted through the pipeline in such a way the temperature of the 

production fluid tends to the environment temperature. Considering the symmetry of the system, 
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the heat is conducted through the different layers of the pipe-in-pipe according to the 

unidimensional transient heat conduction in cylindrical coordinates as can be found in Orlande et 

al. (2012) [36]. With the proper considerations the model becomes: 

 

𝜌𝑖(𝑇)𝐶𝑝𝑖
(𝑇)

𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑘𝑖(𝑇)

𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑡
) + 𝑔𝑖 for 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑖+1,𝑡 > 0     (7) 

 

The following boundary conditions must be observed: 

 

−𝑘0(𝑇)
𝜕𝑇0(𝑟,𝑡)

𝜕𝑟
= 0 𝑓𝑜𝑟 𝑟 = 𝑟0 = 0,𝑡 > 0     (8) 

 

 

−𝑘𝑖(𝑇)
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑟
=  −𝑘𝑖+1(𝑇)

𝜕𝑇𝑖+1(𝑟,𝑡)

𝜕𝑟
 at the interfaces 𝑟 = 𝑟𝑖+1,𝑖 = 0, … ,2, 𝑡 > 0     (9) 

 

−𝑘3(𝑇)
𝜕𝑇3(𝑟,𝑡)

𝜕𝑟
+ ℎ𝑇3(𝑟, 𝑡) = ℎ𝑇𝑠 at 𝑟 = 𝑟_4,𝑡 > 0     (10) 

 

In above equations, 𝜌 is the specific mass [𝑘𝑔/𝑚], 𝐶𝑝 is the specific heat at constant pressure 

[𝐽/(𝑘𝑔𝐾)], 𝑇 is the temperature [𝐾], 𝑡 is the time [𝑠], 𝑟 is the radial dimension [𝑚], 𝑘 is the 

thermal conductivity [𝑊/(𝑚𝐾)], 𝑇𝑠 is the sea temperature [𝐾] and the index 𝑖 goes from 0 to 3. 

Considering the proposed model, this paper aims to obtain a metamodel based on Echo State 

Network for the transient evolution of the temperature of a specific control volume of the 

considered system. In this case, the chosen control volume is the one that represents the boundary 

of the inner pipe because it is assumed that if it is above some critical temperature in which solid 

deposition occurs, which in this work it will be considered of 293,15 𝐾, all the previous control 

volumes will be above this temperature. 

6. METHODOLOGY 

In order to solve the problem, the differential equation that governs the problem was solved 

using the finite volume method. Considering the system’s symmetry, the conduction becomes 

one-dimensional so that only the radial temperature gradient is analyzed. This radius was divided 

into fifty control volumes: thirty for the fluid domain, five for the inner pipe ten for the insulating 

domain, and five for the outer pipe. The fluid domain has a radius of 0.1 𝑚, the inner pipe has an 

external radius of 0.125 𝑚, the insulating layer has an external radius of 0.175 𝑚, and the outside 

pipe has an external radius of 0.2 𝑚. An implicit scheme was used to solve the equation with a Δ𝑡 

of 120.96 𝑠 adding 12009600 𝑠 of analysis. The thermal properties of the production fluid were 

considered to vary with the temperature. The thermal properties of the other domains [37] are 

listed in Table 1. 

Table 1: Pipe-in-pipe thermal properties. 

Component Material 
Specific Mass 

(𝒌𝒈/𝒎³) 

Specific Heat 

[𝑱/(𝒌𝒈𝑲)] 

Thermal 

Conductivity 

[𝑾/(𝒎𝑲)] 
Inner pipe Carbon steel 7700 502.1 52.34 

Insulating layer Polypropylene 750 2000 0.17 

Outer pipe Carbon steel 7700 502.1 52.34 

Once the Finite Volume Method program had been implemented, it was used to generate the 

data set to train the Echo State Network. The inputs of the training data set and of the Echo State 

Network were the initial temperature 𝑇𝑖𝑛, sea water temperature 𝑇𝑠, and the electrical heating 

power 𝐺. The sea water and the electrical heating power were varied accordingly to a Random 

Gaussian Signal with up to fifty signal repetitions within the bounds exposed in the Table 2, while 
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the initial temperature was kept constant. This way, 10000 timesteps were evaluated, 8000 for the 

Echo State Network training and 2000 for testing, resulting in a given temperature profile.  

Table 2: Random Gaussian Signal bounds. 

Input Variable Lower bound Upper bound 

Sea water temperature [𝐾] 272.25 275.15 

Electrical heating power [𝑊/𝑚³] 0 30 

7. RESULTS AND DISCUSSION 

In the training phase, the Echo State Network has achieved a unitary R², while for the testing 

phase, it has achieved an R² of 0.98. The results are presented in the Figure 1.  

 
Figure 1: Training and testing Echo State Network. 

When the Echo State Network is requested to predict some output for a given input between 

the training limits, it may do it successfully with an interval of ±2.2 𝐾, which is the error expected 

from a type J thermocouple. For example, in the Figure 2, the Echo State Network is requested to 

predict the temperature profile in such a condition that the initial temperature equals 343.15 𝐾, 

the sea temperature equals 274.15 𝐾, and the power of electrical heating equals 20 𝑊/𝑚³. The 

Echo State Network shows twenty-four times faster than the Finite Volume Method. In this case, 

the elapsed time to compute the Finite Volume Method was 4.66 𝑠 against 0.19 𝑠 to compute 

Echo State Network prediction, which shows the effectiveness of the employment of the Echo 

State Network as a surrogate model in this problem.  
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Figure 2: Echo State Network prediction compared to Finite Volume Method. 

𝐸𝑟𝑟𝑜𝑟[%] = 𝑚𝑎𝑥 |
𝑇𝐸𝑆𝑁−𝑇𝐹𝑉𝑀

𝑇𝐹𝑉𝑀
| . 100    (11) 

 

In order to illustrate that the results of our surrogate model and finite volume model are close, 

we calculate the maximum absolute percentage error (Eq. 11) for temperature, acquiring a 

maximum error value of 2.99 %. So, it proves that our model has good accuracy. 

A basic assumption about residuals of a model is that the experimental data points are 

independent observations. If the residual exhibit autocorrelation for any lag, except for zero lag 

which is always one, then the observations are not independent or the mathematical model did 

not correctly describe the experimental data [38]. The residuals obtained during the training and 

testing phases showed strong autocorrelations with all the analyzed lags, as seen in the Figure 3, 

whose correction is left as suggestion for future works. 

 
Figure 3: Training and Testing Residuals Autocorrelation.  
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8. CONCLUSION 

This paper proposes the use of an Echo State Network as a metamodel to cool stagnant 

production fluid inside a pipe-in-pipe system with an electrical active heating problem. The Echo 

State Network was twenty-four times faster than the Finite Volume Method used to solve the 

governing differential equation, although it showed strong autocorrelations for all analyzed lags, 

whose correction is left as a suggestion to future works.  
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