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Complex Systems is a branch of Statistical Mechanics that has gained great notoriety in recent years. In 

particular, Cellular Automata are a simple way to represent complex dynamical systems in which space and 

time are discrete. In addition to the high degree of nonlinearity, the Boltzmann-Gibbs formalism fails due 

to the non-extensibility of the systems. In some cases, Complex Systems appear at the typical scale, such 

as stock market fluctuations for example. In the case of epidemic modeling, cellular automata are used in 

the description of contagion processes, such phenomena are complex and have large-scale correlations. In 

this sense, cellular automata present a robust and precise tool for quantifying the spread of diseases in a 

population provided. In our work, we reported the temporal evolution of an infection in the square network, 

counting process is to introduce an interaction between first neighbors and the population in which the 

infection acts remains constant. We obtained, through the fourth-order Binder's cumulative, the instant of 

time 𝑡when the peak of the infection occurs, we also carried out the characterization of the type of passage 

through which the system goes through. We also analyzed the impact that the parameter causes on the 

temporal evolution of the infection. 
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Sistemas Complexos é um ramo da Mecânica Estatística que ganhou grande notoriedade nos últimos anos. 

Em particular, Autômatos Celulares são uma maneira simples de representar sistemas dinâmicos complexos 

em que espaço e tempo são discretos. Além do alto grau de não linearidade, o formalismo de           

Boltzmann-Gibbs falha devido a não-extensividade dos sistemas. Em alguns casos os Sistemas Complexos 

apresentam ausência de escala típica, como as flutuações da bolsa de valores, por exemplo. No caso da 

modelagem de epidemias, os autômatos celulares são utilizados na descrição de processos de contágio, tais 

fenômenos são complexos e possuem correlações em larga escala, neste sentido os autômatos celulares 

apresentam uma ferramenta robusta e precisa para a quantificação da difusão de doenças em uma 

determinada população. Em nosso trabalho reportamos a evolução temporal de uma infecção na rede 

quadrada, processo de contado é caracterizado por uma interação entre primeiros vizinhos e população a 

qual a infecção atua se mantém constante. Realizamos medidas do cumulante de Binder de quarta ordem 

no instante de tempo 𝑡 em que ocorre o pico da infecção, realizando a caracterização do tipo de transição 

pela qual o sistema passa. Analisamos o impacto do parâmetro 𝛼 na evolução da infecção. 

Palavras-chave: autômatos celulares, transição de fase, Epidemiologia.  

1. INTRODUCTION 

The branch of Physics entitled Statistical Mechanics gained new impetus in the area of 

Complex Systems. These systems made up of a large number of components, simple when 

isolated, present a very complicated collective behavior. They have a high degree of non-linearity, 

and non-extensivity, where the application of the Boltzmann-Gibbs formalism often fails. In some 

cases, Complex Systems lack a typical scale, such as those presented in avalanches, earthquakes, 

and stock market fluctuations. When this happens, random events happen to obey power laws. 

The corresponding distributions form fractal or multi-fractal geometric structures. Thus, terms 

such as fractality, non-extensivity, R/S analysis, wavelets, non-linearity, turbulence, chaos,      
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self-organized criticality, anomalous diffusion, Levy processes, growth models, and power law, 

are common in the field of Complex Systems. These new concepts extrapolated the domain of 

Physics developed until just before the end of XIX. These concepts are applied to the Economy, 

stock market fluctuations, capital volatility, etc; Biology in cell evolution, tumor growth, damage 

spread, disease; Genetics in the study of DNA, genetic inheritance, genetic mutations, etc; Neural 

Networks in the study of brain function; Neurology in nervous system analysis, encephalogram 

analysis; Meteorology in the study of climate, weather forecasting; Geophysics in understanding 

earthquakes, avalanches; Cellular Automata in application to biological systems, population 

dynamics, hydrodynamics; among others, putting an end to the division between the various 

Sciences, no longer existing a problem of a specific scientific field. The main feature is 

multidisciplinarity. The difference that exists now is the technique used. This constitutes the 

modern area of Complex Systems [1-18]. 

In particular, Cellular Automata are a simple way to represent complex dynamical systems in 

which space and time are discrete. From a computer science perspective, they are computable 

models for complex phenomena with large-scale correlations that result from very simple       

short-range interactions, for example, fluids, neural networks, ecological systems, molecular 

dynamics, economics, military command networks, modeling of epidemics, etc. [14-25]. These 

systems can undergo phase transitions. Their quantitative descriptions can eventually be 

expressed by exact calculations, that is, without the need for approximations or adjustments to 

numerical data. In this context, the use of computers is relevant to obtaining numerical results, 

using specific techniques for each problem [19, 21]. 

In modeling epidemics, Cell Automata is used to describe the contagion of a given disease, 

configuring a precise tool for modeling and quantifying the spread of diseases in a given 

population [21]. 

A disease passes from individual to individual following the network of contacts within a given 

population [22]. The pattern of propagation in host-pathogen systems is a combination of local 

transmission from the focus of infection and long-distance transmission. Several models describe 

aspects related to an epidemic situation, including models that address the evolution of densities 

of population groups, and the existence of threshold values for the spread of the infection. The 

use of Stochastic Cell Automata to study the dynamics of infectious diseases is an important tool 

to understand the epidemiological process [23-25]. 

An important feature of epidemic models is that they can show phase transitions. A population 

made up of healthy individuals can transition to a sick population, exhibiting a phase transition 

from the healthy state to the sick state. Phase transitions in population systems, considering 

correlations and clustering effects, which have absorbing states is the subject of our study. We 

performed Monte Carlo simulations to observe the temporal effect of an epidemic on a population. 

To achieve our goal, we modeled this scenario using Stochastic Cell Automata in a square 

network. In this network, we performed density measurements typical of the system. 

2.  MATERIAL AND METHODS 

Cellular automata are useful machines for the study of patterns in the formation of a vast class 

of complex systems such as fluids, neural networks, molecular dynamics systems, ecological 

systems, economics, phase transitions, etc. They are mathematically, spatially, and temporally 

represented, discrete, deterministic, and characterized by local interaction and inherent parallel 

evolution [26-28]. 

These systems are characterized by presenting a) discrete mesh formed by cells: one, two, 

three, or more dimensions; b) homogeneity: all cells are equivalent; c) interactions are local: each 

cell interacts only with cells in its vicinity; d) discrete dynamics: at each discrete time, each cell 

updates its current state according to a transition rule, taking into account the states of neighboring 

cells [20-28].  

Each cell consists of a finite number of states, the evolution of the system occurs in discrete 

time according to a uniform local transition rule, or even as a function whose arguments are the 

states of neighboring cells at time t (and possibly the state of the considered cell itself). 
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Populations can transition from a healthy state to a sick one (due to the spread of a disease), 

undergoing a phase transition, a behavior that can be appropriately modeled using Cell Automata 

[19, 21]. 

A disease passes from individual to individual following the network of contacts within a given 

population [22]. For many host-pathogen systems, the pattern of spread is a combination of local 

transmission from the source of infection and long-distance transmission, which establishes new 

foci. Numerous models describe various aspects related to an epidemic situation, including 

models that describe the evolution of densities of population groups involved, and the existence 

of threshold values for the spread of infection. The use of stochastic models to study the dynamics 

of infectious diseases is an important tool to understand the epidemiological process. [26-28]. 

The study of critical phenomena in epidemic models makes it possible to study fluctuations, 

considering correlations and clustering effects. In this context, phase transitions in                           

out-of-equilibrium systems, that is, systems that have absorbing states, have been widely studied 

in two different types of cases: with and without recovery [25]. 

We defined a discrete system consisting of 𝑁 elements, arranged in a one-dimensional discrete 

mesh, with local interactions and stochastic dynamics. The stochastic dynamic is determined by 

the stochastic variable 𝜂𝑖, associated with each element 𝑖 of the system: can take four values,      

𝜂𝑖 = {0,1,2,3}. The values of 𝜂𝑖 = {0,1,2,3} they correspond to the susceptible (S), infected (I), 

recovered (R) and dead (D) states, respectively. The form of contagion is modeled as a 

probabilistic process, the dynamic used disregards births and deaths, not due to the disease, that 

is, the total number of the population to be considered is constant, that is, 
 

𝑆 + 𝐼 + 𝑅 + 𝐷 = 𝑁              (1) 

 

It is considered at the initial moment 𝑡0, that a percentage of system elements are infected. 

every instant of time 𝑡, an element of the system is randomly chosen, then the following local 

state transition rules are applied: 

1. A susceptible individual can be infected according to the probability of infection: 

𝑃(0 → 1) if at least one of your closest neighbors is infected. The probability is given 

by: 

𝑃(0 → 1) = 𝛼
𝑛

𝜏
, 0 < 𝛼 ≤ 1             (2) 

where 𝑛 is the number of nearest neighbors infected and 𝜏, the number of neighbors to 

be considered. For example, in a square network each site 𝑖 in the network has four 

neighbors. 

2. An infected individual recovers spontaneously, with no reinfection, from an interval of 

days limiting the infection 𝑑𝑖 or the same occurs with probability of recovery 

𝑃(1 → 2) = 𝛾. 

3. Death occurs with probability 𝑃(2 → 3) = 𝛽. 

3. RESULTS AND DISCUSSION 

We performed our simulations using square-sized grid 𝑁 = 𝐿 × 𝐿. Initially we took values for 

the linear size of the network 𝐿 in 16, 24, 32, 40, 48. We considered that about 5% of the 

individuals in the network are infected. 

We defined 𝛼 = 0,8, 𝛾 = 0,02, 𝛽 = 0,003 e 𝑑𝑖 = 30, that is, after 30 days of infection, the 

individual is cured. During the simulation, a random site i of the network is chosen, it is verified 

if it is infected, a random number p between 0 and 1 is generated. As the network is square, we 

verified that the maximum number of first is 4, therefore 𝜏 = 4, so we have the following local 

rules for state transition:  

1. If the individual is not infected and 𝑝 <
𝑛

4
, 𝑛 is the number of infected neighbors, it is 

measured by the infection. 

2. If the individual is infected and 𝛽 < 𝑝 ≤ 𝛾, the individual is healed. 

3. If the individual is infected and 𝑝 ≤ 𝛽, the individual is dead. 
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Figure 1 illustrates the temporal evolution of individuals susceptible to infection. In this graph, 

we could see that not every population is infected by the disease. We could also note that for     

𝑡 > 20, the infection is stopped. 

 
Figura 1: Curve of Susceptible Individuals and related to the time. 

In Figure 2 we reported the temporal evolution of infected individuals in the network. 

Concerning to Figure 2, we notice that, over time, the proportion of susceptible starts to fall, as 

the number of infected people increases simultaneously. It is also noted that the peak of infection 

occurs in 𝑡 next to 20. 

 
Figura 2: Curve of Infected Individuals over time. 

In Figure 3, we showed how the individuals in the network are cured, we see that about 

80% of the individuals are cured. In comparison with Figure 2, we could conclude that the 

infection stops at 𝑡 > 60. 
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Figura 3: Curve of Recovered Individuals over time. 

In Figure 4, we showed the behavior of deaths caused by the disease over time. 

 
Figura 4: Curve of Dead Individuals over time. 

We used the fourth-order Binder cumulative for the number of susceptible individuals, to 

determine when the peak of infection occurs, the same is given by: 

 

𝑈4(𝑆) = 1 −
⟨𝑆⟩4

⟨𝑆2⟩2
              (3)  

 

In Figure 5, we displayed typical fourth-order Binder Cumulant measures for susceptible 

individuals 𝑈4(𝑆) as a function of time 𝑡 for different network sizes. From the cumulative graph 

it can be seen that the change of state in the system is characterized by a second-order transition. 

We also reported that, for 𝛼 = 0.8 that the peak of the infection occurs in 𝑡 = 16. 
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Figura 5: Fourth-order Binder cumulative for susceptible individuals.  

Setting the Grid Size Parameter 𝑁 = 𝐿 × 𝐿 = 48, we varied 𝛼 = {10−3, 0.25,0.50,0,75,1.0}, in 

order to analyze the impact of the parameter on the spread of the infection. In Figure 6, we 

presented typical measures of the mean infected. We observed that with increasing 𝛼, the expected 

value for the mean infected grows faster, as well as reaching its peak faster. 

 
Figura 6: Infection diffusion in relation to the parameter 𝜶. 

4. CONCLUSION 

We studied an automata system, a square network, this system aims to model the temporal 

evolution of an epidemic in a population of 𝑁 individuals. We used Monte Carlo processes to 

measure typical system densities. We observed that as time passes the system changes from 

susceptible to infected, and that after the peak of the infection, the population becomes mostly 

cured, with a small percentage of dead individuals, such behavior was already expected, since 

𝛽 < 𝛾. Our stochastic results, whether deterministic or stochastic, are in line with those of models 

already in the literature. It is also noted that our model has two absorbing states, recurred (𝑅) and 

the dead ones (𝐷). We estimated the peak of infection using the fourth-order Binder Cumulative 

for the number of susceptible individuals 𝑈4(𝑆). We also obtained that with the increase of 𝛼 the 

average infected increases.  
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