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Uma nova classe de caminhadas aleatórias, chamada Elephant Random Walks (ERW), com memória,      

não-Markoviana, foi proposta por Schütz e Trimper caracterizada por regimes difusivos típicos de difusão 

anômala. Seguindo esta linha, propomos um modelo de caminhadas aleatórias norteada pelo princípio de 

interação cinética (KIP), onde segundo o KIP a evolução temporal da função de distribuição de partículas 

idênticas sujeitas a colisões binárias nos remete a um funcional sempre crescente com o tempo, satisfazendo 

o enunciado da irreversibilidade da segunda lei da Termodinâmica. Derivamos uma distribuição                      

𝜅-exponencial discreta para construir nosso modelo de caminhadas aleatórias. Realizamos simulações de 

Monte Carlo para quantificar os regimes difusivos típicos de caminhadas aleatórias de tamanho finito. 

Analisamos três regiões do parâmetro deformador 𝜅. No limite 𝜅 → 0, a distribuição da 𝜅-exponencial recai 

na distribuição exponencial ordinária, onde encontramos a típica difusão Browniana. No limite máximo de 

anti-equilíbrio (𝜅 → 3 2⁄ ), encontramos uma transição do regime difusivo ordinário para o regime 

superdifusivo. Adicionalmente, afastando-se da região de anti-equilíbrio, encontramos o comportamento 

difusivo do ERW. Nossos resultados são mais um caso de transporte anômalo em sistemas complexos, que 

estão associados à difusão de partículas para qual a variância se espalha de maneira não linear com o tempo.  

Palavras-chave: 𝜅-exponencial, difusão, caminhadas aleatórias. 

 

A new class of random walks, Elephant Random Walks (ERW) in the memory type, non-Markovian, was 

proposed by Schütz and Trimper characterized by diffusive regimes typical of anomalous diffusion. 

Following this line, we proposed a model of random walks guided by the principle of kinetic interaction 

(KIP), where, according to KIP, the temporal evolution of the distribution function of identical particles 

subject to binary collisions leads us to an ever-increasing functional with time, satisfying the statement of 

the irreversibility of the second law of Thermodynamics. We derived a distribution of the exponential 𝜅 

that is discrete. In the limit 𝜅 → 0, the distribution of the 𝜅-exponential falls into the ordinary exponential 

distribution, where we found the typical Brownian diffusion. In the upper limit of anti-equilibrium            

(𝜅 → 3 2⁄ ), we found a transition from the ordinary diffusive regime to the super-diffusive regime. 

Additionally, moving away from the anti-equilibrium region, we found the ERW’s diffusive behavior. Our 

results are yet another case of anomalous transport in complex systems, which are associated with particle 

diffusion for which the variance spreads non-linearly with time. 

Key words: 𝜅-exponential, diffusion, random walks.  

1. INTRODUCTION 

Stochastic processes are important for mathematics, allowing the development of several 

consequences in probability theory according to mathematical practice; for physics, they are 

present in several phenomena of physical interest. From a mathematical perspective, classical 

probability theory, stochastic differential equations, sigma-algebras, Martingales, fractional 

calculus and fractional numerical methods, time series, random walks and combinatorial analysis, 
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Gaussian noise, Markov processes, Ornstein–Uhlenbeck process, Ito’s stochastic integrals, 

Fokker–Planck equations, reaction–diffusion systems, jump processes, Levy processes [1-11]. 

In particular, random walk theory is used to investigate various phenomena in nature, 

including phenomena in economics, finance, ecology, physics, chemistry, biology, materials 

science, mental disorders and chaos. [12-19]. 

In an attempt to answer the question about how far the malaria mosquitoes would travel over 

time, Pearson, in 1905, published his questions in the journal Nature [20]. Therefore, originally, 

the genesis of random walks occurred in the observation of biological phenomena and, even 

today, several biological phenomena are modeled by random walks. Time-dependent random 

processes were generalized with differential equation models to describe the phenomenon of 

anomalous diffusion, such as Langevin equations, master equation, Fokker-Planck equation      

[21-23]. 

Another group of random walks has the peculiar characteristic of recording their decisions 

over time, called Elephant Random Walk (ERW) [24]. Other models of random walks with 

unlimited memory, which can recall decisions throughout its history, have been applied in the 

investigation of anomalous transport [25], amnesia [26, 27], Alzheimer's [28], the solution of new 

paradoxes [26], including the derivation of new random walk models with memory [29-34]. 

Several models were built according to the model described in [24]: the random walks model 

with Alzheimer's [18], the random walks model with Gaussian memory profile [25], the random 

walks model with exponential memory profile [26], the random walks model with a memory 

profile of the 𝑞-exponential [35] and the random walk model with binomial memory profile [33].  

From the perspective of developing random walks altering memory characteristics, we sought 

to answer the guiding question of our work: What is the impact of distribution of exponential 𝜅 

[36, 37] in the diffusive regimes of random walks of the memory class? To answer this question, 

we proposed a model of random walks with a memory profile of the exponential 𝜅. The 𝜅-statistics 

is relevant in several contexts such as in the description of pure plasmas constituted by electrons 

[38], cosmology [39], solar neutrinos [40], bremsstrahlung [41], anomalous diffraction [42],     

self-gravitating systems [43]. To achieve our goal, based on the physical relevance of the                 

𝜅-statistics, we built our model of random walks with a memory profile of the 𝜅-exponential, we 

reported our results in this work.  

2. MATERIAL AND METHODS 

In 2004, G.M. Schütz and S. Trimper solved the one-dimensional problem of non-Markovian 

random walks with memory, for example, at each instant of time the walker's decision is recorded. 

This model became known as Elephant Random Walks (ERW) [24].  

In the ERW model, memory is formed by a set of random variables: 𝜎𝑡′, where 𝑡′ is the time 

equally chosen, every instant of time t, the walker's decision depends on its entire history, 

retrieved from an even distribution: 1 𝑡⁄ , 𝑡 is the current time. In our model we replaced the 

uniform distribution: 1 𝑡⁄  by the distribution 𝜅-exponential - 𝑓𝜅(𝑡). 
Generalizations of Maxwell-Boltzmann entropy proposed based on fractal geometry, for the 

case where physical systems present weak chaos and another according to the principle of kinetic 

interaction, were introduced by Tsallis [44] and Kaniadakis [45, 46], respectively. A common 

point among these new entropies is the fact that such generalizations depend on some deforming 

parameter. 

Kaniadakis proposed a new statistic, the 𝜅-statistics, which generalizes the                        

Maxwell-Boltzmann-Gibbs statistic through the variation of the deforming parameter: 𝜅. The 

theory is guided by the principle of kinetic interaction (KIP). According to KIP, the temporal 

evolution of the distribution function of identical particles subjected to binary collisions leads us 

to an ever-increasing functional with time, satisfying the statement of irreversibility of the second 

law of Thermodynamics. Kaniadakis concluded that such a functional is related to a type of 

entropy defined as: 

 
𝑆𝜅 = −⟨𝑙𝑛𝜅[𝑔(𝑥)]⟩ = −∫𝑑𝑥 𝑔(𝑥)𝑙𝑛𝜅[𝑔(𝑥)][𝑔(𝑥)]            (1) 
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where 𝑔(𝑥)is the particle velocity distribution and 𝑙𝑛𝜅 is the logarithm deformed by the 

parameter: 𝜅. The 𝑙𝑛𝜅 is a real and decreasing function  ∀𝑥 ∈ 𝑅 quantified by: 

 

𝑙𝑛𝜅(𝑥) =
𝑥𝜅−𝑥−𝜅

2𝜅
                (2) 

 

its inverse is called κ-exponential [47]. For our problem we will use the discrete version of the    

𝜅-exponential 

 

𝑓𝜅(𝑦, 𝜆) = 𝐴(𝜅, 𝜆)𝑒𝑥𝑝𝜅(−𝜆𝑦)                            (3) 
 

where 𝜅 is the deforming parameter of the exponential function,  𝜆 is a positive parameter, 𝐴(𝜅, 𝜆) 

is a positive function, 𝑒𝑥𝑝𝜅(−𝜆𝑦) = (√1 + 𝜆2𝜅2𝑦2 − 𝜆𝜅𝑦)

1

𝜅
 and 𝑦 = 0,1,2,3. . . . , ∞. The 

physical meaning of  𝜅 can be understood from particle correlations. The smallest index value is: 

𝜅 → 3 2⁄ , corresponds to the maximum value of the anti-equilibrium state, the state farthest from 

the classical thermal equilibrium, characterized by the highest correlations. In the limit of            

𝜅 → +∞, the highest value of the index corresponds to the behavior of the system at the classic 

thermal limit [46]. 

Performing the following transformations: 𝑦 = (𝑡 − 𝑡′), 𝐴(𝜅, 𝜆) = 1 − (√1 + 𝜆2𝜅2 − 𝜆𝜅)
1

𝜅 

and 𝑒𝑥𝑝𝜅(−𝜆𝑦) = (√1 + 𝜆2𝜅2𝑦2 − 𝜆𝜅𝑦)

1

𝜅
→ (√1 + 𝜆2𝜅2(𝑡 − 𝑡′)2 − 𝜆𝜅(𝑡 − 𝑡′))

1

𝜅
, it is certain 

that 𝑓𝜅(𝑛, 𝜆) → 𝑓𝜅(𝑡′, 𝑡), substituting in eq.(3), we obtained the final form of the probability 

density function 

 

𝑓𝜅(𝑡′, 𝑡) = (1 − (√1 + 𝜆2𝜅2 − 𝜆𝜅)
1

𝜅) 𝑒𝑥𝑝𝜅(−𝜆(𝑡 − 𝑡′))           (4) 

 

Taking the limit of  𝜅 → 0, we obtained the ordinary exponential distribution described in [47]. 

 

𝑙𝑖𝑚
𝜅→0

𝑓𝜅 (𝑡′, 𝑡) = (1 − 𝑒𝑥𝑝(−𝜆))𝑒𝑥𝑝(−𝜆(𝑡 − 𝑡′))                       (5) 

 

Decisions are recorded in memory at every moment: 𝑡, such property attributes the non-

Markovian characteristic to random walking. The walker can perform one step to the right (+1) 

or one step to the left (-1), as in a one-dimensional Markovian random walk. According to the 

memory profile described by eq.(4), decisions are retrieved, directly impacting the propagation 

of the particle with position quantified by the stochastic evolution equation: 

 

𝑋𝑡+1 = 𝑋𝑡 + 𝜎𝑡+1                                                               (6) 

 

At time: 𝑡 + 1, the variable 𝜎𝑡+1 takes on the value +1 when the walker walks one step to the 

right and −1 when the walker walks one step to the left. Memory consists of a set of random 

variables 𝜎𝑡′ for time: 𝑡′ < 𝑡. This process takes place as follows: 
 

1. In the time: 𝑡 = 1, the walker, initially in the position:𝑋0, where 𝜎1 = +1 (𝜎1 = −1) with 

probability 𝑞 (1 − 𝑞). The probability of the first step is: 

 

𝑃[𝜎1 = ±1] =
1

2
[1 + (2𝑞 − 1)𝜎1]                          (7) 

 

2. in the time: 𝑡 + 1, a time 𝑡′ is chosen from the set {1,2,3, … , 𝑡} randomly with probability:  

𝑤(𝑡); 
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3. in the time: 𝑡 + 1, 𝜎𝑡+1 is chosen stochastically by the rule: 𝜎𝑡+1 = +𝜎𝑡′ (𝜎𝑡+1 = −𝜎𝑡′) with 

probability   𝑝 (1 − 𝑝); 

 

𝑃[𝜎𝑡+1 = ±𝜎𝑡′|𝜎𝑡′] =
1

2
[1 + (2𝑝 − 1)𝜎𝑡+1𝜎𝑡′]            (8) 

 

4. using rules (2) and (3) we obtained the time-conditioned probability: 𝑡 + 1 

 

𝑃[𝜎𝑡+1 = 𝜎|𝜎1,2,...,𝑡] =
1

2
∑ [1 + (2𝑝 − 1)𝜎𝜎𝑗]
𝑡
𝑗=1 𝑤(𝑗)           (9) 

 

where 𝜎 = ±1 is the observed value of the set: 𝜎1,2,...,𝑡 = {𝜎1, 𝜎2, . . . , 𝜎𝑡}, t  𝑡 ≥ 1. 

 

Using eq.(9), we calculated the conditional displacement: 

 

⟨𝜎𝑡+1
(𝑖) = 𝜎|𝜎1,2,...,𝑡⟩ = ∑ 𝜎𝜎=±1 𝑃[𝜎𝑡+1 = 𝜎|𝜎1,2,...,𝑡]          (10) 

 

developing the eq.(10), we found: 

 

⟨𝜎𝑡+1
(𝑖) = 𝜎|{𝜎1,2,...,𝑡}⟩ =

1

2
∑ [1 + (2𝑝 − 1)𝜎𝜎𝑗]
𝑡
𝑗=1 𝑤(𝑗)         (11) 

 

proceeding by solving eq.(11), we obtained:  

 

⟨𝜎𝑡+1
(𝑖) = 𝜎|{𝜎1,2,...,𝑡}⟩ =

1

2
∑ 𝛼𝑡
𝑗=1 𝜎𝑗𝑤(𝑗)            (12) 

 

proceeding, solving eq.(13), we found the general equation to find the first moment of the position 

 
⟨𝑥𝑡+1⟩ = ⟨𝑥𝑡⟩ + ⟨∑ 𝛼𝑡

𝑗=1 𝜎𝑗𝑤(𝑗)⟩                          (13) 

 

where 𝛼 = 2𝑝 − 1 e 𝑥𝑡 = 𝑋𝑡 − 𝑋0, is the displacement of the walker. If 𝑤(𝑡) = 1 𝑡⁄  the model is 

the ERW. For more information, the reader can consult [24]. In our problem, random walks have 

a profile memory of the 𝜅-exponential, we performed the following substitution: 𝑤(𝑡) = 𝑓𝜅(𝑡′, 𝑡). 

So, followed by applying at the first moment of the position: 

 
⟨𝑥𝑡+1⟩ = ⟨𝑥𝑡⟩ + ⟨∑ 𝛼𝑡

𝑗=1 𝜎𝑗𝑓𝜅(𝑗, 𝑡)⟩              (14) 

 

Eq.(14) does not have a closed analytical solution. So, we looked for a numerical solution. To 

achieve our goal, we used Monte Carlo simulation methods to estimate the variance. 

 

𝑉𝑎𝑟(𝑥𝑡) = ⟨(𝑥𝑡)
2⟩ − ⟨𝑥𝑡⟩

2                                        (15) 

 

This type of random walk has a characteristic that the first step is macroscopically relevant, 

therefore, it has an impact on the diffusion regimes measured by the Hurst exponent [48]. We 

estimated the Hurst exponent using the asymptotic scaling law of the root mean square deviation 

of position with respect to time. 

 

𝑉𝑎𝑟(𝑥𝑡) = ⟨(𝑥𝑡)
2⟩ − ⟨𝑥𝑡⟩

2 = 𝐴𝑡2𝐻                        (16) 
 

where 𝐴 is a constant and 𝐻, the exponent of Hurst. For random walks, the first moment of the 

position grows more slowly than the second moment. Therefore, the following approximation is 
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pertinently used: 𝑉𝑎𝑟(𝑥𝑡) ≈ ⟨(𝑥𝑡)
2⟩ = 𝐴𝑡2𝐻. The diffusive regimes are classified according to the 

Hurst exponent assuming the values (2𝐻 < 1), (𝐻 = 1) e (2𝐻 > 1) in subdiffusive, ordinary 

diffusive and superdiffusive, respectively [48]. 

3. RESULTS AND DISCUSSION 

We performed Monte Carlo simulations of random walks of the memory type with memory 

profile of Kaniadakis eq.(5). Our numerical experiments were carried out to 104 walkers and 105 

steps. We explored these systems through the physical meaning of 𝜅, understood from particle 

correlations. The lowest value of the index is: 𝜅 → 3 2⁄ , corresponds to the value of the                

anti-equilibrium state, the state farthest from the classical thermal equilibrium, characterized by 

the highest correlations. In the limit of 𝜅 → +∞, the highest value of the index corresponds to the 

behavior of the system at the classical thermal limit. As an additional limiting case, we analyze 

the diffusive regimes for the case where the Kaniadakis discrete distribution becomes an ordinary 

discrete exponential distribution, for example: in the limit 𝜅 → 0. We used, aiming to analyze the 

impact of 𝜅 on the diffusive regimes, the value of the decay constant: 𝜆 = 1. 

After performing the numerical experiments, we performed typical measures of variance, 

estimating by it the Hurst exponent to characterize the diffusive regimes. 

In Figure 1, we displayed the Hurst exponent values for several values of the deformer 

parameter: 𝜅. We started with measures typical of the Hurst exponent, in its form: 2𝐻, from the 

anti-equilibrium limit with 𝜅 → 3 2⁄ , increasing the deformation values to 𝜅 = 5, 100 and 1000, 

moving away from the anti-equilibrium state. Our finite size walks do not exhibit typical values 

of 2𝐻 for the classic thermal limit: 𝜅 → +∞. 

 
Figure 1: Behavior of the Hurst exponent (H) for different values of the feedback probability p and 

different values of the deforming parameter of the exponential, ranging from κ=1.5, 5.0, 100 and 1000. 

In Figure 2, we displayed the Hurst exponent values for various values of the deformer 

parameter: 𝜅, that is, 2𝐻, from the anti-equilibrium limit with 𝜅 → 3 2⁄ , increasing the 

deformation values to 𝜅 = 5, 100 and 1000, moving away from the anti-equilibrium state, 

comparing the diffusive regimes of our model at the additional limits of the Markovian movement 

for 𝜅 → 0, calculated in eq.(5) and with the diffusive regimes in the ERW model.  
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Figure 2: Behavior of the Hurst exponent (H) for several of the exponential deforming parameter: κ=0, 

1.5, 5.0 and 100, comparing with the ERW model. 

Let's discuss our results in ascending parameter order: 𝜅. To 𝜅 → 0, as expected for the 

exponential distribution the diffusive regimes are classic of ordinary diffusion characterized by 

2𝐻 = 1. We discussed this result outside the discussion proposed by Kaniadakis, in the limit of 

ordinary diffusion, to verify the robustness of our results regarding the absence of memory of the 

exponential function. Our discrete exponential distribution does not lead to long-range random 

walk correlations. However, our results do not state that random walks with an exponential 

memory profile cannot lead to long-range correlations. This apparent paradox is discussed in 

Alves et al. (2014) [26], where the authors describe a model where the exponential distribution 

leads to long-range correlations. Our results show us that for the discrete Kaniadakis distribution 

we derive, in the limit of 𝜅 → 0, does not lead to long-range correlations characterized by        

2𝐻 ≠ 1. At the limit of anti-equilibrium with 𝜅 → 3 2⁄ , we used the value of 𝜅 = 1.501, we found 

a transition from the ordinary diffusive regime to the super-diffusive regime as we increased the 

probability 𝑝. According to our measures, the super-diffusive regime emerges first to the 

persistence region in 𝑝 = 0.8 with 2𝐻 = 1.04. Moving away from the anti-equilibrium region, 

we noted that the emergence of the super-diffusive regime occurs for values of 𝑝 that are smaller 

and smaller as 𝜅 increases. This behavior occurs for the characteristic values of 𝜅 = 5, occurring 

in 𝑝 = 0.7 with 2𝐻 = 1.01 and for 𝜅 = 100, occurring in 𝑝 = 0.6 with 2𝐻 = 1.01. As the 

deformer parameter increases, the persistence region exhibits greater 2H measurements, 

approaching, inferiorly and superiorly, to the usual measurements of the ERW model, a behavior 

visually verified in Figure 2. 

In this work, we proposed a model of random walks with a discrete memory profile of the 

exponential 𝜅. We derived the discrete 𝜅-exponential distribution from a generalized, discrete, 

exponential model used to model the propagation of defects in electronic chips. Next, we 

performed Monte Carlo simulations to quantify the typical diffusive regimes of finite-size random 

walks. We discussed our results in ascending order of the exponential deformer parameter 𝜅. We 

checked that at the limit 𝜅 → 0 the distribution of the exponential 𝜅 falls on the ordinary 

exponential distribution [47]. Within this limit, diffusive regimes are ordinary. We discussed this 

result outside the discussion proposed by Kaniadakis (2013) [45], in the limit of ordinary 

diffusion, to verify the robustness of our results regarding the absence of memory of the 

exponential function. In the upper limit of anti-equilibrium (𝜅 → 3 2⁄ ), random walks exhibited a 

transition from the ordinary diffusive regime to the super-diffusive regime as we increased the 

probability 𝑝. We found that the super-diffusive regime initially appears in the persistence region 

for all values of 𝜅. We observed that, moving away from the anti-equilibrium region, the 

emergence of the super-diffusive regime occurs for values of 𝑝 smaller and smaller as 𝜅 increases. 

Additionally, we noted that as the persistence region exhibits more intense diffusive regimes, 

characterized by measures of 2𝐻 that are bigger. 
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