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The magnetism of strongly correlated electrons in narrow energy bands is a relevant phenomenon for 
several technologically important materials. In this paper, we investigate the conditions for 
ferromagnetism of the two-dimensional Hubbard model by the functional-integral method. Using the 
static and uniform approximation for the partition function of the system we have determined the 
functional free energy for a squared lattice. Thus we have obtained magnetic phase diagrams equivalent 
to the Hartree-Fock approximation ones. We have observed the existence of a critical temperature (TC) 
and of a critical onsite Coulombian electrons interaction (UC) for occurrence of spontaneous 
magnetization in the context of our approximations. We have obtained several phase diagrams relating T, 
U and n (average number of electrons per site). We graphically verified the dependence of TC and UC 
with respect to n, besides the dependence of TC with respect to n and U simultaneously. In the half-filled-
band case (n=1) we have obtained an analytical expression for UC, for some given temperatures. The 
determination of TC and UC for the spontaneous magnetization occurrence contributes to show the 
functional characteristics of this method. The shape of the curves relative to temperature agrees 
qualitatively with that expected for itinerant electrons magnetic systems. We have shown that besides the 
existence of a minimum value for the Coulombian interaction energy for occurrence of spontaneous 
magnetization, there is a saturation point, that is, a limiting value for the magnetization increase, as 
expected. 
Keywords: functional integral method, Hubbard model, magnetism of itinerant electrons 

1. INTRODUCTION 

The development of a consistent theory for magnetism of strongly correlated electron 
systems has challenged statistical physics since the 30’s. During all this time there were 
important progresses about the microscopic origin, but safe theoretical methods have not been 
attained for determining the thermodynamics properties of such systems in consonance with the 
extraordinary available experimental results. 

The functional integral method was created[1,2] to study strongly correlated electrons 
systems at the end of the 50´s, and was largely theoretically developed[3-7] at the 70´s and 80´s. 
The method presents innovative aspects concerning electron correlations since it converts 
complex interactions in quanta fields which spatially and temporally fluctuates over electrons 
which hypothetically do not interact with each other. 

In this paper, we use the model introduced by Hubbard in order to deal with electron 
correlations in narrow energy bands, which is well known as Hubbard model[8]. 

Let )( iRr −φ  be the atomic wave function for an electron in an atom at a site iR , and +
σic  

)( σic  the creation (annihilation) operator for an electron at the site iR , where 1±=σ , or ↑  and 
↓ , is the spin label. In the “tight binding” approximation the Hamiltonian can be written 
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In (2) V represents the nuclear potential acting over the electrons, Tij is a matrix element 
related to two sites (hopping integral). Thus, the first term in (1) is actually the ordinary 
Hamiltonian band. Eq. (3) represents the interaction among electrons. 

Now we can perform the more important approximation: to disregard all terms in (3) 

different from ii
r

iiU 1= , that is, to consider only interactions at the same site.8  Thus (1) 

becomes 

∑∑ −
+ +=

σ
σσ

σ
σσ

,
,,

,, 2
1

i
ii

ji
jiij nnUccTH ,          (4) 

which is the well known Hubbard Hamiltonian. 
Supposing that there is a magnetic field B  applied to the system, the Zeeman term can be 

written as 
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where g is the Landé´s factor and Bµ  is the Bohr magneton. 

Including the Zeeman term (5), the Hamiltonian can be written as 
10 HHH += ,     (6) 

where 
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∑ ↓↑= ii nUnH1 ,                                                          (8) 

and 

ijBijij BgTT δµσσ

2
1−= .                                              (9) 

This model describes electron correlation effects in a hypothetically crystalline lattice 
regarding the band as a narrow one. 

The magnetic behavior of strongly correlated electrons systems is of great interest and thus 
several investigations have been performed to determine, for example, spontaneous 
magnetization phases. Here we delineate such phases by means of parameters such as 
temperature, average number of electrons per site and Coulombian on-site electrons interaction 
energy. Performing the static and uniform approximation for the development of the functional-
integral related to the partition function of the system, we have calculated its functional free 
energy, which gave rise to all results that we have obtained. 

Nowadays there is plenty of technological and scientific research about itinerant magnetism 
mostly because of the discovery of new superconductings and semiconducting materials whose 
microscopic mechanisms present itinerant electrons[9,10]. 

This paper is organized as follows. In Sec. 2 the methodology is introduced; in Sec. 3 our 
results are presented and discussed. Sec. 4 summarizes the conclusions of the work. 

2. METHODOLOGY 

2.1 Functional Integral Method 

The grand partition function is given by 
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Z = Tr exp(- Hβ ).                                                         (14) 
The model we chose here to represent the physical properties of magnetic systems of itinerant 

electrons is the Hubbard model for a non-degenerated orbital in which only interactions between 
electrons at the same site are admitted. Since we are working in the grand canonical ensemble, 
we add a new term related to the chemical potential in (7): 

∑∑∑∑ −= +
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,0 .                                    (15) 

Representing the partition function by the interaction representation 

0

1

0
10 )(exp HHdTZZ 〉








−×〈= ∫ ττβτ  ,                                    (16) 

where Z0 is the partition function for H0, Tτ is the time ordered, and H1(τ) is defined in the 
interaction representation by 

τβτβτ 00
11 )( HH eHeH −= .                                                (17) 

The functional-integral method formulation for the Hubbard model requires the Coulombian 
interaction in terms of squares of one-body charge and spin operators representation. We adopt 
the following identity:[7]  
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Substituting (18) in (15), the Hubbard Hamiltonian can be rewritten as 

10 HHH += ,                                                     (20.a) 
with  
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The single body term in (18) was included in 0H . The term 0H  now, as before, represents 

the Hamiltonian term of a single body and the term 1H  represents the Hamiltonian term of two 
bodies. Thus, an analogy with (16) can be made and one can express the partition function in the 
interaction representation defined by 0H  as[7] 

0

1

0
10 )(exp HHdTZZ 〉








−〈= ∫ ττβτ  ,                                       (21) 

where [ ])exp( 00 HTrZ β−= , and 〉〈... is the thermal average related to 0H . 
In equation (20), for each interval τd , one can use Hubbard-Stratonovich identity[1,2] which 

is valid  for any real or complex operator a 
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The main usage of this identity is to substitute the squared exponential operators by an 
integral of linear operators.  

The application of the functional-integral method in strongly correlated electrons systems is 
based upon this transformation (22).  

Hence one can rewrite the grand partition function in this way[7]: 
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In (23), Z0 is the partition function of the non-interacting system and αξ q  are Fourier 
transforms for auxiliary fields; q ≡ (q, ωv)  [k ≡ (k, ωn)] represent wave vectors and Matsubara 
frequencies for bosons [fermions]; N is the site number and G0 is the non-interacting Green 
function of an electron. 

From calculation of (23) and (24) the system thermodynamic properties can be determined. 
 

2.2 Functional free energy determination by the static and uniform approximation 

As written in (18), the term ↓↑ ii nn can be represented by 

( ) ( )220 z
iiii SSnn −−=↓↑                                                     (25) 

The partition function Z in wave vectors and Matsubara frequencies space is7 
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where V, defined by (24), obeys the dependence relation '
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Doing k-k’= q and n-n’= ν, and recalling the definition (24) we have 
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Matsubara`s Green function in (26) can be expressed as 
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Performing the static and uniform approximation, which consists in the approximation of V 
in (26) by V0. 
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At this point, all auxiliary fields in the functional integral ),( 0 z
νν ξξ qq  whose moments or 

frequencies different from zero are all discarted; 

Thus, '''0,0'
'

0,0
'

',' ' σσ
σσσσσ δδδδδ nnnn VnnVV kkkkkk ==  and  

( )ziN
UV 0

0
0

2
1

0,0 σξξπβσ +




−=  .                                        (31) 

Calculating the generic matrix element (V0G0), we obtain 
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Thus, the matrix (V0G0) is diagonal, and so its trace is equal to the summation of all its 
elements; 
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As all auxiliary fields related to frequencies or moments different from zero are disregarded, 
the productories are simplified in (26) and the partition function (Z) can now be written as 

[ ] ),()(exp 0
0
0

2
0

20
00

0
0

zzz ZddZ ξξξξπξξ +−= ∫  .                             (34) 
On the other hand, one can make 

             [ ]),(exp 0
0
00

0
0

zz FddZ ξξβξξ −= ∫  ,                                       (35) 

where ),( 0
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zF ξξ  is the functional free energy of the system. Comparing (34) with (35), we 
have 
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The most relevant terms in Z occur for a minimum value of the functional free energy. It has 
been proved3 in the static and uniform approximation, that the resulting phase diagrams are 
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equivalent to those corresponding obtained by the well-known Hartree-Fock method. For the 
most relevant terms which we mentioned above we have 
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One can observe, from (40) and (41), that z
0

0
0 ,ξξ  can be written as thermal averages of  the 

occupation number (nkσ): 
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Performing an exchange of variables we have 
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Notice that ↓↑ −= nnz  when zz
00 ξξ = , that is, the new variable z is proportional to the 

magnetization when, keeping 0
0ξ  constant, the functional free energy has a minimum value. 

At this moment we will perform the calculation of the functional free energy as a function of 
z

0ξ , keeping 0
0ξ  constant and equal to 0

0ξ . σ
0V  and σε k  will be substituted in (37) by the 

values given by (31) and (29), respectively. With 
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Calling Sk for the argument of the summation above, we have for the functional free energy 
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3. RESULTS AND DISCUSSION 

With (43), we plot the functional free energy as a function of z. One observes that, for 
constant temperature and constant average number of electrons per site (n), there is a critical 
Coulombian interaction energy (UC). For U larger than UC, the system presents spontaneous 
magnetization and for U lower than UC it does not. The graphic in figure 1 presents this 
behavior. We worked in the half-filled band case (average number of electrons per site equal to 
1), and temperature kept at 0,1 t/kB. The graphic shows the behavior of the functional free 
energy for three values of U; UC being equal to 3,78t. Here, the F(z) terms which are 
independent of z are all disregarded, in order to have a better comparative analysis. In the same 
way we now keep U constant and equal to 6t, and verify the functional free energy dependence 
in relation to z for three different temperatures, TC being 0.69 t/kB, as shown in figure 2. 

In case of paramagnetic behavior, the second derivative of the functional free energy in 
relation to z at the point z = 0 must be positive. On the other hand, for ferromagnetic behavior, it 
must be negative. Thus we can determine critical parameters for spontaneous magnetization 
occurrence making the second derivative of the functional free energy in relation to z at the 
point z = 0 equal to zero. The parameters that can be determined are, for example, TC for a given 
n or UC for a given n. 

From (41), the second derivative of the functional free energy in relation to z at the point z = 
0 is 
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Figure 1: Functional free energy as a function of the 
auxiliary field which acts in the electrons spins for 
three different values of U; temperature kept constant 
(T= 0,1 t/kB) 

Figure 2: Functional free energy as a function of the 
auxiliary field which acts in the electrons spins for 
three different values of T; U kept constant (U=6t) 
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A notable case of this calculation is the half-filled band (n = 1), because in this situation the 
chemical potential (µ) is equal to U/2. This fact, well known in the literature, makes Eq (45) 
much easier. Thus (45) can be rewritten as 
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Making the first term equal to zero, one gets UC for the half-filled band case as 
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For temperature equal to 0.1t/kB, we found UC equal to 3,7859t, which is shown figure 1. 
In the same way, we can make (45) equal to zero and determine, by iteractive numerical 

calculation, UC and TC for each given n, making a phase diagram of the system. Figure 3 shows 
UC as a function of n with the temperature being kept constant and equal to 0.1t/kB. Figure 4 
shows TC as a function of n, U being kept constant and equal to 6t. In both cases, the regions 
denoted by F and P correspond to ferromagnetic and paramagnetic behavior; respectively. 
From (39) and taking into account the exchange of variables (42), we have 
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Thus we plot z  as a function of U and z  as a function of T. In both cases the average 
number of electrons per site was kept equal to 1 (half-filled band). Figure 5 shows z  as 
function of U; the temperature being kept equal to 0.1 t/kB. It is important to notice the existence 
of a critical value for U, that is, it is not allowed the occurence of magnetization for values of U 
lower than the critical value. On the other hand, there is a saturation value for U, and for values 
of U larger than this value the magnetization does not increase any more. These results are in 
perfect agreement with those that would be expected because as it was explained before, UC in 
half-filled band case at 0.1 t/kB, is equal to 3.78, which can be seen in figure 5. Besides that, 
since 1=+ ↓↑ nn , ( ) 1=− ↓↑ máxnn , one can notice that there is a natural limit for increase in 
the magnetization, which justifies the existence of a saturation value for U. 
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Figure 3: UC as a function of n (T = 0.1 t/kB) Figure 4: TC as a function of n (U=6t) 
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Figure 5: Mag as a function of U. There are a critical 
value and a saturation value for U(T = 0.1 t/kB) 

Figure 6: Mag as a function of T; (U = 6t). 

 
Figure 6 shows the graphic of z  as a function of T; U being kept equal to 6t. The figure shows a 
critical value for the temperature, and for temperatures larger than the critical temperature the 
magnetization is not allowed. These results are in agreement with figure 2 and its shape is well 
known for ferromagnetic materials.  In both graphics, z  is denoted by mag. 

Considering yet the half-filled band case and using (46) one can determine a magnetic phase 
diagram relating U and T. It is represented in figure 7. A more generic result is the three-
dimensional phase diagram which is shown in figure 8, relating U, T and n. 
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Figure 7: Phase diagram relating T and U in 
the half-filled band case. 

Figure 8: Three-dimensional phase diagram relating T, U 
and n. The volume inside the surface of points corresponds 
to ferromagnetic behavior. The other one, outside, 
corresponds to paramagnetic behavior 
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4. CONCLUSIONS 

The most innovative aspect of the functional-integral method is the fact that it transforms, by 
means of a mathematical identity, the electronic interactions systems into a system of non-
interacting electrons subjected to space-and time-varying auxiliary fields. 

By means of calculation of the functional free energy, here attained with the static and 
uniform approximation in the functional-integral, and taking into account the most relevant 
terms of the energy, we defined spontaneous magnetization regions in several diagrams of 
magnetic phases equivalent to Hartree-Fock results. 

The determination of critical values for the Coulombian interaction energy and temperature 
for the occurance of spontaneous magnetization contributes to present the functional 
caracteristics of this method. The shape of curves related to temperature qualitatively agrees 
with those that would be expected. We have shown that besides the existence of a minimum 
value for the Coulombian interaction energy for occurrence of spontaneous magnetization, there 
is a saturation point, that is, a limiting value for the magnetization increase, as expected. 
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