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Studies on seed germination and seedling development in different environmental conditions help to 
understand the ability of exotic species to colonize new environments. Cryptostegia madagascariensis is an 
exotic invasive species in the semiarid Caatinga Phytogeographical Domain, in the northeastern region of 
Brazil. In this study, was evaluate how the abiotic factors interfere in germination and the impacts of a water 
deficit in the initial growth of seedlings. During germination, the seeds were exposed to different 
temperatures (constant and alternating) combined with two light conditions (white and dark light). In 
germination, we also evaluated the effects of water and saline stress. In initial growth, the seedlings were 
submitted to four levels of water availability (100%, 70%, 40% and 10% of field capacity). The milder (20 
at 30°C) and alternate temperatures studied provided greater germination four days after sowing, independent 
of light. High temperatures (35°C) are a limiting factor for germination, as well as water and saline stress (>2 
MPa). The water deficit reduces the growth of the seedlings, but these showed morphological adaptations to 
the different treatments. However, lower levels of water reduced its invading potential. Therefore, factors 
such as high temperature (> 30° C), saline and water stress, reduce its germination potential and the reduction 
of water availability affects its growth, but not its survival. 
Keywords: Biological invasion, germination of seeds, seedling establishment.  
 
Estudos sobre germinação de sementes e desenvolvimento de plântulas em diferentes condições ambientais 
ajudam a entender a capacidade de espécies exóticas colonizarem novos ambientes. Cryptostegia 
madagascariensis é uma espécie exótica invasora no domínio fitogeográfico da Caatinga, região semiárida 
do Nordeste do Brasil. Neste estudo, foi avaliado como os fatores abióticos interferem na germinação e os 
impactos do déficit hídrico no crescimento inicial de mudas. Durante a germinação, as sementes foram 
expostas a diferentes temperaturas (constante e alternada), combinadas com duas condições de luz (luz branca 
e escura). Na germinação, também foram avaliados os efeitos do estresse hídrico e salino. No crescimento 
inicial, as mudas foram submetidas a quatro níveis de disponibilidade de água (100%, 70%, 40% e 10% da 
capacidade de campo). As temperaturas mais amenas (20 a 30°C) e alternadas estudadas proporcionaram 
maior germinação quatro dias após a semeadura, independente da luz. Altas temperaturas (35 °C) são um 
fator limitante para a germinação, assim como o estresse hídrico e salino (>2 MPa). O déficit hídrico reduz o 
crescimento das mudas, porém estas apresentaram adaptações morfológicas aos diferentes tratamentos. No 
entanto, níveis mais baixos de água reduziram seu potencial invasor. Portanto, fatores como alta temperatura 
(> 30 ° C), estresse salino e hídrico reduzem seu potencial de germinação e a redução da disponibilidade de 
água afeta seu crescimento, mas não sua sobrevivência. 
Palavras-chave: Invasão biológica, germinação de sementes, estabelecimento de plântulas. 

1. INTRODUCTION     

Invasive species cause impacts at different scales, altering soil properties, reproductive potential 
and thus causing losses in biological diversity [1, 2]. Therefore, studies are needed to investigate 
the ecological factors and inherent characteristics of each species that affect the naturalization 
process in new communities [3]. Thus, it is known that the invasiveness of exotic species may be 
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associated with a number of characteristics, such as reproduction [4], phenotypic plasticity [5], and 
ability to colonize low resource environments [6].  

Studies on seed germination and emergence of seedlings are important tools to help 
understanding the potential for colonization of exotic species in introduced areas [7], the optimal 
conditions for germination are generally similar to those required for growth [8]. In addition, seed 
germination is a key event for the propagation of species and can be regulated by environmental 
factors such as temperature, light, salinity, and soil moisture [9].  

After germination, the success of an invasive species in different environmental conditions is 
also related to its ability to utilize limited resources efficiently [10]. In arid and semi-arid regions, 
rains occur irregularly and are alternated by periods of drought [6], making water availability one 
of the main limiting factors for the establishment of new species in these regions [6, 11]. Thus, in 
many arid regions exotic species invade areas of higher water availability [12]. Studies regarding 
invasive plants that occur in riparian or flooded areas of dry regions, show that these species are 
able adapt to the reduction in water availability [13, 14]. 

However, for some species the reduction of water availability may have direct effects on 
invasiveness, as it reduces growth and productivity [15, 16]. Morais e Freitas (2012) [16], showed 
that moderate water stress did not severely affect the invasive Acacia longifolia (Andrews) Willd, 
but reduces growth and affects the physiological traits, which may limit the invasion of this species 
in an area of low water availability. In climbing plants, one of the groups that cause the most 
impacts, invasiveness is associated with rapid growth, so they tend to settle in areas of high 
humidity, such as riparian areas [17]. 

Cryptostegia madagascariensis Bojer ex Decne. (Apocynaceae) is a scandent shrub native to 
Madagascar (Africa), where it occurs in dry forests, disturbed areas, and river banks, growing as a 
shrub or as a climbing plant [18]. In the northeastern region of Brazil, it has become an invasive 
species, establishing dense populations mainly in areas near rivers [19]. One of the characteristics 
of this species is to produce many seeds in a single reproductive event which are dispersed by wind 
and germinate in great quantity [20]. One of the areas most invaded by C. madagascariensis in 
Brazil are the riverine “carnaubais” [19], areas characterized by high water availability part of the 
year and the conspicuous presence of the endemic palm Copernicia prunifera (Mill.) H. E. Moore, 
known as carnauba [21]. 

Therefore, understanding how abiotic factors (e.g., temperature, light, water, and saline stresses) 
affect germination and how water availability, the most limiting factor for the establishment of 
seedlings in dry regions [6], interferes with its initial growth may help to understand the 
characteristics that enable C. madagascariensis to invade the Brazilian semiarid regions. 
Additionally, this will help identify areas most susceptible to invasion and trace control strategies 
based on the factors that promote their establishment. 

Our hypotheses are that: I- C. madagascariensis presents high germination rates, tolerating a 
wide range of temperatures; II- The availability of light increases its germination, as it is a species 
that invades mainly disturbed areas; III- Reduced water availability negatively affects the 
germination and its potential for invasion, as higher water availability environments concentrate 
the invaded areas. Thus, our objectives were to evaluate how abiotic factors interfere in germination 
and the impacts of a water deficit in the initial growth of seedlings of the invasive C. 
madagascariensis. 

2. MATERIALS AND METHODS 

2.1 Seed Collection  

The seeds used in the experiment were collected at the Experimental Farm Vale do Curu, 
(latitude 3º49’25” S; longitude 39º20’20” W) which belongs to the Federal University of Ceará 
(UFC) and is located in Pentecoste County, Ceará State, Brazil. This farm is located in the Brazilian 
semiarid region with annual rainfall of 772.2 mm (local weather station). After collection, we 
packed the fruits in plastic bags that were transported to the Seeds Laboratory of the UFC. We 
collected plant material from this farm and took it to be identified by specialists the Herbarium 
Prisco Bezerra - EAC UFC and deposited under record number 54608 (EAC). 
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2.2 Germination 

We evaluated germination at different temperatures, light conditions, and under water and saline 
stresses, through two experiments. In the first, we evaluated germination at different temperatures 
and light conditions. We used temperatures ranging from 20 to 40°C, constant (20, 25, 30, 35, and 
40°C) and alternating (20/25, 20/30 and 20/35°C). Each temperature was combined with two light 
conditions: white and continuous dark, totaling 16 treatments, in a factorial arrangement in a 
completely randomized design (8 temperatures × 2 light). Constant temperatures we used 12/12 
hours of light and dark, and for alternating temperatures, 12 hours of light corresponding to the 
highest temperature (day) and 12 hours of dark were used for the lowest temperature (night). In the 
absence of light, the Petri dishes were wrapped in aluminum foil and packed in a black plastic bag. 

In each treatment, four replicates of 25 seeds were used, distributed in Petri dishes containing 
two sheets of ‘germitest’ paper as substratum, moistened with 3.5 ml of distilled water. The seeds 
were placed in germination chambers of the type B.O.D. and evaluations were performed daily for 
10 days after sowing. Treatment dark the seeds were evaluated with green light of safety. A 
protruded radicle was the criterion established for the seeds to be considered germinated. On the 
tenth day, we calculated the germination (%) and the average germination time [22]. 

In the second experiment, we simulated water and salt stresses during germination using an 
osmotic solution of polyethylene glycol (PEG 6000) and sodium chloride (NaCl), respectively. The 
solution of water stress was prepared according to the methodology described by Michel e 
Kaufmann (1973) [23], and for the salt stress the van't Hoff equation was used [24]. We used 
concentrations of -0.2, -0.4, -0.6, -0.8, and -1.0 MPa for each of the stress treatments, besides the 
concentration of 0.0 referring to control treatment where we used only distilled water. 

Thus, in this experiment seeds were submitted to six water stress treatments and six salt stress 
treatments with four replicates of 25 seeds each treatment. The substrate was moistened with 3.5 
ml of the solution corresponding to each treatment. The substrate was moistened with 3.5 ml of the 
solution corresponding to each treatment and were placed in germination chambers at 25°C with a 
photoperiod of 12/12 hours of light and dark. 

After 15 days of evaluation the seeds that did not germinated in the stresses evaluated were 
transferred to Petri dishes moistened with distilled water and evaluated for a further 10 days to 
verify the ability to recovery after a period under stress conditions, according to Gorai et al. (2009) 
[25]. With the obtained data, we calculated germination (%), mean germination time, and 
germination recovery (%). 

2.3 Initial growth in water deficit 

The seedlings for the experiment were produced after sowing in trays containing soil and humus 
(3: 1 ratio). After 30 days, 160 seedlings were randomly selected and transplanted to 32 cm high 
pots containing 8 kg of soil, standardized by weighing. The soil used in the experiment was 
previously dried open air, sieved, and determined the field capacity (FC) through the amount of 
water retained by the soil after saturation and natural drainage according to Souza et al. (2000) [26]. 
Water retention in 8 kg of soil was 1.4 L, determined as 100% of the field capacity. A water 
availability gradient was simulated with four levels: absence of stress (100% of FC), low stress 
(70% of FC), moderate stress (40% of FC), and severe stress (10% of FC). 

The pots were arranged in four replicates, 10 plants for each treatment arranged in a completely 
randomized design. The seedlings underwent a period of acclimatization, during which for two 
days they continued to receive 100% of the FC and then started to receive water levels according 
to each treatment. To maintain the four water levels, eight vessels of each treatment was weighed 
every other day and the lost volume supplemented. During the experiment, the temperature and 
relative humidity was monitored by means of a thermohygrometer with a maximum temperature of 
37.1 °C and a minimum of 24.2 °C, and a mean ambient relative humidity of 63.5%. 

At 75 days, morphological measurements of the plants of each treatment were taken to verify 
the effects of water stress. Initially the following variables were measured: height, diameter of the 
stem base, and number of leaves. Then, the plants were removed from the pots using running water 
and the length of the root was measured and also measured the total leaf area. The plants were 
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divided in leaves, stems, and roots and placed in the drying oven at 80°C for 48 hours to determine 
the dry mass. With the data obtained, we calculated the specific leaf area (SLA), root / shoot mass 
ratio (R/S ratio), relative growth rate (RGR) [27], and root specific growth (RSG) [28] for each 
treatment. 

2.4 Data analysis 

Analyzed the temperature × light interaction data using a two-way ANOVA. The salt and water 
stress variables in the germination was analyzed through a simple ANOVA. To use the ANOVA, 
we tested the normality and homogeneity of the data through the Kolmogorov-Smirnov and Levene 
tests, respectively. 

The germination data when not normal was transformed into sine arc √x / 100. The means were 
compared by the Tukey test at 5% probability. The effects of water stress on the seedlings were 
analyzed by ANOVA. Data that were not normal were transformed by log (x +1). The means were 
compared by the Tukey test at 5% probability. Finally, we performed a regression analysis among 
the variables related to growth: leaf area, total dry mass, and RGR. All statistical Analyses and 
graphs was performed using software Sigma Plot 12.00 and Assistat. 

3. RESULTS 

3.1 Germination 

The interaction between temperature and light had a significant effect only on the percentage of 
germinated seeds (p < 0.05). Only temperature significantly affected average germination time (p 
< 0.01). The highest percentages of germination, approximately 90%, occurred at the constant 
temperatures of 20 and 25°C and at alternating temperatures 20/25, 20/30 and 20/35°C. However, 
at 35°C, germination was less than 10% and at 40°C there was no germination. The seeds do not 
depend on light to germinate, although under temperatures of 25 and 30°C and dark continuous 
caused a reduction in germination (Figure 1a). Was observed that at 25, 20/25, and 20/30°C, most 
of the seeds germinated until the fourth day. Alternatively, at temperatures of 20, 30, and 35°C, the 
germination time was seven days (Figure 1b). 

 
Figure 1: Germination (a) and average germination time (b) of Cryptostegia madagascariensis submitted to 
different temperatures and light intensity cycles. Columns represent the averages and bars represent error. 

a: The temperatures are followed by the same lowercase letter and the same upper case between 
temperatures indicate no difference by the Tukey test (p<0.05). b: Means followed by the same lowercase 

letters do not differ by the Tukey test (p<0.05). 
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The two stress conditions, water and salt, significantly affected the variables studied in 
germination (p <0.01). The percentage of germination was not affected until -0.2 MPa. However, 
in salt stress the germination was completely inhibited at -0.8 MPa (Figure 2a) and in the water 
stress only at -1.0 MPa (Figure 2b). We also observed that for both types of salt concentration the 
seeds showed a high recovery capacity after 15 days when transferred to distilled water (Figure 2, 
a and b). 

The germination time was very sensitive to stress, as the addition of salt (PEG 6000 or NaCl) to 
the substrate increased germination time at the lowest concentration (-0.2 MPa). In the control 
treatment, germination occurred at four days, while in the presence of salt, germination time was 
greater than seven days (Figure 2, c and d). 

 
Figure 2: Germination (a and b), recovery (a and b) and average germination time (c and d) of 

Cryptostegia madagascariensis submitted to water stress (PEG-6000) and salt (NaCl). Columns represent 
averages and bars represent error. Means followed by the same lowercase letters do not differ by the Tukey 

test (p<0.05). 

3.2 Initial growth in water deficit  

During the initial growth, none of the seedlings died in the water deficit treatments. The results 
also showed that the reduction of water availability had a significant effect on all variables studied 
(p <0.05) except for the root length, which was not affected (Table 1).  
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Table 1: Averages and F values for morphological characteristics of Cryptostegia madagascariensis 
growing at different water levels. RGR- relative growth rate; SLA- specific leaf area; SRG- specific root 

growth; R/S- mass Root/ shoot ratio; TDM- total dry mass. 

 Stress Level  
Features Absence 

(100%) 
Low 
(70%)  

Moderate 
(40%) 

Severe 
(10%) 

F values 

Height (cm) 56.15a 57.02a 57.02a 18.87b 581.64** 
Diameter (mm) 4.87a 4.58a 4.61a 2.58b 13.49** 
RGR (g g-1 dia) 0.03a 0.03a 0.02b 0.006c 32.22** 
Number of leaf 21.75a 20.16b 19.16b 3.99c 484.01** 
Leaf area (cm2) 360.26a 314.27b 238.07c 73.08d 450.02** 
SLA (cm2 g-1) 236.07b 159.46c 198.47bc 289.94a 10.76** 
Root length (cm) 64.62a 58.50a 64.43a 60.63a 3.10ns 

SRG (cm g) 43.04b 35.08b 50.29b 90.56a 10.00* 
R/S (g) 0.38b 0.42b 0.49b 1.28a 128.97** 
TDM (g) 4.71b 5.60a 3.88c 1.18d 218.81** 

Means followed by the same letter do not differ by Tukey test. * (p<0.05); ** (p<0.01); ns Not significant. 

Seedling height was affected only by severe stress treatments. During the experiment, plants 
exposed to low or moderate stress levels reached more than 55 cm in height, and reached less than 
19 cm under severe stress. Stem diameter was lower in the high stress treatment group but did not 
differ between the other treatments. We observed that the RGR of the seedlings was negatively 
affected in all treatments with water reduction, being lower under severe stress (Table 1). Was 
observed that the seedlings that received severe stress treatments experienced a loss of leaves. We 
also found no difference between leaf numbers at low and moderate stress levels. In relation to the 
leaf area, it was decreasing with the reduction of water availability, resulting from both the 
formation of smaller leaves and the loss of leaves (Table 1).  

The SLA of C. madagascariensis was higher in the treatment of severe stress and lower in low 
and moderate stress. For root investment, we observed that root length was not affected by the 
availability of water. However, the seedlings that received the severe stress treatment showed a 
higher RSG and R/S ratio. The total dry mass of seedlings was lower in severe stress and higher in 
the treatment of low stress (Table 1).  

In relation to the biomass allocation to the different organs, we observed that the seedlings that 
received severe stress allocated a greater proportion of biomass to the roots (50%). Considering the 
two intermediary stress levels, we found a similar allocation ratio between root and stem. On the 
other hand, in the absence of stress the largest mass was allocated to the stem, 41% (Figure 3).  

 
Figure 3: Proportion of biomass allocation between the different organs of Cryptostegia madagascariensis 

growing at four levels of stress. 
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The regression analysis of the growth variables showed that the increase in leaf area explains at 
least 86% of the accumulation of dry matter in the seedlings (Figure 4a). The increase of the leaf 
area is also related to a higher RGR, 74% (Figure 4b).  

 
Figure 4: Regression analysis between leaf area and total dry mass (a) and leaf area and relative growth 

rate (b) of Cryptostegia madagascariensis growing at four stress levels. 

4. DISCUSSION 

The invasive potential of C. madagascariensis can be directly associated with high reproduction 
rates [20] and rapid and high germination, in addition to germination independent of light. We also 
observed that adaptations to declines in water availability can guarantee the survival of seedlings 
of this invader in low water levels, which can occur even in riverine areas of the semiarid [29]. On 
the other hand, high temperatures, and saline and water stresses can inhibit their germination. In 
addition, reducing water availability reduces seedling growth during the initial establishment, and 
can be a determining factor for the invasiveness of this species in the semiarid region of Brazil. 

Seeds of C. madagascariensis germinate rapidly when water availability and temperatures are 
adequate, with an average germination time of four days at temperatures of 25, 20/25 and 20/30°C. 
According to Abreu e Garcia (2005) [30], rapid germination is an important ecological strategy, 
enabling seedlings to take advantage of favorable environmental conditions. These authors also 
affirm that the average germination time also indicates the speed with which a species is able to 
colonize a new environment. Therefore, the rapid germination of C. madagascariensis allows it to 
rapidly colonize a new area when it offers suitable abiotic conditions. 

On the other hand, high temperatures constitute a barrier to germination, becoming very low or 
absent above 30°C. In addition, when germination occurred, the mean time was higher at about 7 
days. According to Baskin e Baskin (2014) [9], the absence of germination at elevated temperatures 
may be a survival strategy, so that seedlings are not exposed to unfavorable conditions.  

Light is not a fundamental resource for the germination of C. madagascariensis, although at 
temperatures of 25 and 30°C the absence of light reduced germination. Viera et al. (2004) [20], also 
studied the germination of C. madagascariensis, light reduction percentages, and the formation of 
normal seedlings. Thus, environments with more light availability should increase their 
germination, which may help to explain the higher rate of occurrence of this invader in disturbed 
areas as observed by Sousa et al. (2016) [31]. However, the germination of C. madagascariensis 
occurs at different temperatures and light availability, which shows that this species is able to 
colonize environments with different climatic conditions, such as under the canopy and in open 
areas.  
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The seeds of C. madagascariensis are very sensitive to water and saline stress. Small 
concentrations of the salts PEG 6000 and NaCl reduced the percentage and increased the time to 
germination. According to McDonald (2007) [32] and Ramirez et al. (2014) [33], decreased water 
availability may inhibit the mobilization of reserves, respiration, and enzymatic activity in seeds. 
Although water and saline stress may inhibit the germination of C. madagascariensis, the seeds 
maintain viability and high germination rates when transferred to distilled water, reaching similar 
percentages to those observed in the control treatments. Pujol et al. (2000) [34] found that low 
osmotic potential is a factor that can induce dormancy (inhibition of germination until favorable 
conditions) in seeds. According to Khan et al. (1998) [35], this may occur through compounds that 
inhibit germination. 

Therefore, the ability of C. madagascariensis seeds to remain viable under conditions of high 
stress and to germinate when these conditions are overcome shows that these factors do not affect 
their viability. Gorai et al. (2009) [25], observed that Diplotaxis harra (forssk.) boiss, an invader 
from the arid region of Tunisia, also presents a high capacity for recovery of germination after 
stress. Thus, this characteristic may be a strategy to colonize and invade semi-arid regions, which 
are more subject to drought and saline conditions [36]. 

As expected, water is one of the most important resources for the invasive potential of C. 
madagascariensis, since it negatively affects the germination and initial growth of the seedlings. 
Low water availability resulted in changes in most of the morphological characteristics assessed 
during initial growth, many related to adaptations to stress conditions. The reduction in the number 
of leaves and leaf area observed in C. madagascariensis reduces perspiration surfaces and the loss 
of water [37, 15]. Our results showed that the reduction of leaf area occurred during low stress 
conditions, and in severe stress we observed the loss of leaves in seedlings. Brown et al. (1998) 
[38] verified that the invasive congener C. grandiflora is a decidua optional according to the 
availability of water. Therefore, the loss of leaves by C. madagascariensis under conditions of 
higher water stress may indicate that the formation of a dense canopy on native species is related 
to areas with increased water availability.  

The reduction of RGR under moderate stress conditions can be an advantageous strategy for 
invasive plants in arid environments, as according to Rejmánek (2011) [4], high growth rates 
demand higher water consumption. In addition, the treatment of low stress induced an increase in 
productivity (TDM) of the seedlings of C. madagascariensis. According to Morais e Freitas (2012) 
[16], this higher growth in low levels of stress can occur so that seedlings can take advantage of the 
available water. In the seedlings that grew under moderate stress levels, we observed only leaf 
changes (leaf area and SLA lower) and shoot growth. While during severe stress the seedlings 
presented more extreme signs of dehydration, such as loss of leaves and changes in roots. Even 
with lower water availability, the seedlings showed growth of the root system. According Farooq 
et al. (2009) [15] and Drenovsky et al. (2008) [28], the seedlings can increase the uptake of soil 
resources through a higher root / shoot ratio. In addition, under severe stress, the seedlings presented 
a high RSG, which indicates the production of thinner roots at a lower cost to the plant and also 
increases the area of absorption [39, 40].  

The observed morphological changes contribute to the survival of C. madagascariensis under 
conditions of a water deficit. However, they may conflict with the invasiveness of this species, 
since the invading potential of climbing plants is associated with high productivity [17] through 
large leaf areas and high photosynthetic rates [41]. We observed that RGR and the total dry mass 
of C. madagascariensis are directly related to the increase of leaf area. Therefore, the production 
of smaller leaves and the loss of leaves when water availability is low reduces the growth capacity 
of this invader. Thus, it is expected that the formation of dense coverings of C. madagascariensis, 
high growth, and the ability to scale the nearby vegetation are associated with areas of high 
humidity, such as the rivers and areas of C. prunifera. 

Finally, we can say that the high germination rates under different abiotic conditions is a factor 
associated with the invasive potential of this species. Therefore, control measures must be taken to 
prevent its reproduction. In addition, during initial growth the seedlings tolerate different water 
availabilities. However, we believe that C. madagascariensis seedlings can be successfully 
established in environments with a moderate degree of water stress, and conditions of greater stress 
should limit their expansion. From these results, mechanical measures of control for this invader 
should be adopted during the driest periods, as it may be most vulnerable. We also recommend 
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more studies that include other abiotic variables and the tolerance of plants to drought over longer 
periods of time. 

5. CONCLUSION 

High temperatures (> 30 °C), salt and water stress reduce their germination potential. However, 
germination is not affected by light availability. During initial growth, reduced availability of water 
affects its growth and leaf development, which may reduce its competitive capacity. 

Finally, we can say that the high germination rates under different abiotic conditions is a factor 
associated with the invasive potential of this species. Therefore, control measures must be taken to 
prevent its reproduction. In addition, during initial growth the seedlings tolerate different water 
availabilities. However, we believe that C. madagascariensis seedlings can be successfully 
established in environments with a moderate degree of water stress, and conditions of greater stress 
should limit their expansion. From these results, mechanical measures of control for this invader 
should be adopted during the driest periods, as it may be most vulnerable. We also recommend 
more studies that include other abiotic variables and the tolerance of plants to drought over longer 
periods of time. 
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