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One of the main tasks of professionals in the Earth sciences is to convert coordinates from one reference 

frame into another. The coordinates transformation is widely needed and applied in all branches of modern 

geospatial activities. To convert from one reference frame to another, it is necessary initially to determine the 

parameters of a coordinate transformation model. A common way to estimate the transformation parameters 

is using the least-squares theory within a linearized Gauss-Markov Model (GMM). Another approach arises 

from a numerical method. Here, a Monte Carlo Method (MCM) is used to infer the uncertainty of estimators. 

This method is based on: (i) the assignment of probability distributions to the coordinates in the two reference 

frames, (ii) the determination of a discrete representation of the probability distribution for the transformation 

parameters, and (iii) the determination of the associated uncertainties from this discrete representation of the 

estimates of the transformation parameters. In this contribution, we compare the weighted least-squares 

within the GMM (WLSE-GM) and the proposed method regarding the transformation problem of computing 

2D similarity transformation parameters. The results show that, the transformation parameters uncertainties 

are higher for the LS-MC than the WLSE-GM. This is due to the fact that the WLSE-GM solution does not 

take into account the uncertainties associated with the system matrix. In future studies the Monte Carlo 

method should be applied to the nonlinear least-squares solution.  
Keywords: Uncertainty Propagation, Monte Carlo, Coordinate Transformation. 

 

Uma das principais tarefas dos profissionais envolvidos com as Ciências da Terra é a transformação de pontos 

cujas coordenadas estão vinculadas em referenciais distintos. A transformação é necessária e amplamente 

aplicada em diversas atividades que lidam com informações espaciais. Para realizar tal conversão, 

inicialmente, deve-se dispor dos parâmetros de transformação. Geralmente, os parâmetros de transformação 

são estimados por meio da aplicação do método dos mínimos quadrados (MMQ) sob a condição do modelo 

de Gauss-Markov (GMM). Outra abordagem surge de um método numérico. Aqui, o método Monte Carlo 

(MCM) é utilizado para inferir as incertezas das estimativas do MMQ quando as coordenadas em ambos os 

referenciais são tratas como observações e, portanto, sujeitas à erros aleatórios. Três aspectos principais do 

método proposto são: (i) especificação da distribuição de probabilidade das coordenadas em ambos os 

referenciais; (ii) determinação empírica da distribuição acumulada dos parâmetros de transformação, e (iii) 

estimativa das incertezas dos parâmetros de transformação. Nesta contribuição, comparamos os mínimos 

quadrados ponderados (WLSE-GM) e o método proposto dentro do contexto de GMM. A comparação foi 

realizada por meio de um exemplo numérico de transformação de similaridade no espaço 2D. Os resultados 

mostram que as incertezas dos parâmetros de transformação são maiores para o método proposto que o 

WLSE-GM. Isso se deve ao fato de que a solução WLSE-GM não leva em conta as incertezas associadas à 

matriz design. Em estudos futuros, o método Monte Carlo deve ser aplicado à solução não linear de mínimos 

quadrados.   
Palavras-chaves: Propagação de Incertezas, Monte Carlo, Transformação de Coordenadas.  
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1. INTRODUCTION  

One of the main tasks of professionals in the Earth sciences is to convert coordinates from one 

reference frame into another. The coordinates transformation is widely needed and applied in all 

branches of modern geospatial activities. Those fields of application range from satellite 

positioning [1] to photogrammetry [2]. 

In general, the process of conversion is performed in two steps. First, the transformation 

parameters are estimated from a redundant set of points of coordinates given in two different 

reference frames known as control points (also referenced as identical or homologous points). 

Second, the transformation parameters estimated in the first step are used for the conversion of the 

points from one frame to another. Moreover, the law of propagation of uncertainty may also be 

applied in order to estimate the uncertainties of transformed points [3]. Typically, the standard 

uncertainty component is quantified by variance or standard deviation. 

A variety of transformation models are available, such as: Body rigid, Similarity, Orthogonal, 

Affine, Polynomial, Projective, among others. An overview of different transformation models may 

be found in Greenfeld (1997) [4]. In the majority of cases, the transformation problem is formulated 

as a mathematical problem of unknown transformation parameters in a standard Gauss-Markov 

model (GMM). In that case, the transformation parameters can easily be computed by the 

application of the least-squares adjustment method (e.g., Ghilani, 2010, pp. 345-368) [3].  

However, in the last decades many new computation methods have been developed to deal with 

the problem of coordinate transformation. Here, we list some recent contributions: 

• Robust method: Janicka & Rapinski (2013) [5] used a robust method, showing that coordinates 

of control points are less influential to outliers.  

• Multiple hypothesis testing and Akaike information criterion for transformation model 

selection: Lehmann (2014) [6] showed how to select a proper transformation model by hypothesis 

testing, and also extended the approach so that not only parameters themselves can be tested but 

also constraints on those parameters.  

• Computational-Intelligence algorithms: the use of algorithms to search for a solution for a 

problem by natural or artificial agents through the use of collective methods has been investigated 

in the literature. For instance, Konakoglu et al. (2016) [7] investigated the performances of three 

different artificial neural network models (Feed Forward Back Propagation, Cascade Forward Back 

Propagation, and Radial Basis Function Neural Network) concerning 2D coordinate 

transformation. Civicioglu (2012) [8] compared different computational-intelligence algorithms, 

such as Differential Search Algorithm, Artificial Bee Colony, Self-Adaptive Differential Evolution 

Algorithm, Adaptive Differential Evolution Algorithm, Particle Swarm Optimization Algorithm, 

and many others. 

• A more recent development is associated with adjusting the ‘error-in-variables’ (EIV) 

model by a total least-squares approach. In that case, the coordinates of the control points in both 

reference frames are observations and, therefore, are subjected to random errors. However, based 

on the example of a planar similarity transformation, Neitzel (2010) [9] showed that the total least-

squares solution can be easily obtained from a rigorous evaluation of the Gauss–Helmert model. 

Discussions regarding total least-squares algorithms can be seen in [10 - 18].  

Despite the countless contributions made over the years, there is continuing research on the 

subject, mainly because there has been an increase in computational power. In this sense, apart 

from the purely analytical approaches, we proposed an alternative method that incorporates the 

least-squares estimation (LS) into the Gauss–Markov model (GMM) together with a Monte Carlo 

method (MCM). We denominated it the Least-Squares-based Monte Carlo method (LS-MC). Here, 

we restrict ourselves to the Gauss-Markov model (GMM) for the problem of coordinate 

transformation, because it is the most typical situation in geodesy and geophysics. This contribution 

is also confined to regular models in which no singular matrices occur. However, singular cases 

can be treated in an analogous manner. 

In the sense of standard GMM, the random errors are only assigned to the coordinates of control 

points in a unique frame, whereas the elements of the system matrix are treated as error-free 

quantities. This poses the problem, into GMM, of assessing the uncertainties associated with 

transformation parameters in the case where the coordinates in the two reference frames are 
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observations, and therefore subjected to random errors. This problem may be formalized as the 

integration of parameters estimation and uncertainty propagation in the context where the random 

errors contaminate both the observations vector and system matrix within GMM.  

Moreover, replacing physical parameters with synthetic ones in order to simplify the 

transformation model to a linear equation system has been a common practice in geodesy and 

geophysics. However, the linearization of the model that relates the synthetic parameters to the 

physical ones is still necessary in order to have the uncertainties of the estimated physical 

parameters. In that case, the first order of the Taylor series expansion can be applied to solve it. 

Nevertheless, the linearized model can often provide an inadequate representation of the 

uncertainties of parameters when the model itself is highly non-linear and/or the uncertainty of 

measurements is very low [19]. Analytically expressible solutions are ideal only in cases where 

they do not introduce any approximation. Therefore, a more appropriate method would be based 

on the propagation of probability density functions (PDFs) using a numerical method, specifically 

a Monte Carlo method (MCM). 

Another problem also encountered in geophysical and geodetic applications concerns the 

construction of the confidence interval (CI) associated with the transformation parameters. The CI 

(also referred to as the coverage interval or in some cases the coverage region) is closely related to 

statistical significance testing. For example, if for some estimated parameter θ one wants to test the 

null hypothesis that θ = 0 against the alternative that θ ≠ 0, then this test can be performed by 

determining whether the confidence interval for θ contains 0. More generally, given the availability 

of a hypothesis testing procedure that can test the null hypothesis θ = θ0 against the alternative that 

θ ≠ θ0 for any value of θ0, then a confidence interval with confidence level CI = 1 − α can be defined 

as containing any number θ0 for which the corresponding null hypothesis is not rejected at 

significance level α [20]. The CI of a least-squares parameter is often constructed by multiplying 

the standard deviation of a parameter by the appropriate critical value, i.e., by a quantile value of 

the probability distribution associated with that parameter. This quantile is computed for a given 

probability. For example, the probability that a Gaussian random variable is within 2 standard 

deviations from its mean is approximately 95%. This means that 95% of the time the most probable 

value will be contained in that interval. Generally, standard normal and t-student distributions are 

used to predict the CI in which the unknown true value of a parameter can exist. The critical values 

of these distributions are found in widespread statistical lookup tables or computed by popular 

scientific software. In this contribution, we will show how LS-MC can be used to construct the CI 

without the need to resort to tabulated critical values.  

The outline of the paper is as follows: First, we introduce the mathematical problem of 

determining the transformation parameters using weighted least-squares in the case where 

uncertainties exist in both the observations vector and coefficient matrix of the Gauss-Markov 

model (GMM), possibly of full rank. Second, we show the main aspects to implement the Least-

Squares-based Monte Carlo method. Finally, we present a numerical example using the 2D 

Similarity Transformation to illustrate the proposed LS-MC method. It is important to mention that, 

although we restrict ourselves to a coordinate transformation problem, the proposed LS-MC is a 

generally applicable method. 

2. THE GAUSS-MARKOV MODEL IN THE CONTEXT OF COORDINATE 
TRANSFORMATION 

We start with the following transformation model: 

[
X𝑖

Y𝑖
] = 𝑠 [

𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛼)
−𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼)

] [
𝑥𝑖

𝑦𝑖
] + [

𝑇𝑥

𝑇𝑦
] = [

𝑎 𝑏
−𝑏 𝑎

] [
𝑥𝑖

𝑦𝑖
] + [

𝑐
𝑑
]                                (1) 

with 𝑖, … , 𝑛 the number of homologous points of the coordinate systems XY and xy. It is important 

to mention that the number of observations is 2𝑛, where 𝑛 is the number of control points in both 

reference frames. In that case, the scale factor s and the rotation angle α are given in function of the 

synthetic parameters as follow: 
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      𝑠 = √𝑎2 + 𝑏2                                                                      (2) 

 

α = 𝑡𝑎𝑛−1 (
𝑏

𝑎
)                                                                    (3) 

 

The transformation given by Eq. (1) employs four physical parameters: a single scale factor "𝑠" 
along the X- and Y-axes, one rotation angle α, and two translations (shifting) of the coordinate 

origin, Tx and Ty. This transformation model is known as the 2D Similarity Planar Transformation 

Model and it is often used in applications of geodesy, geophysics, engineering, computer vision, 

geographical information science, and related branches of science and engineering. Figure 1 shows 

a schematic diagram of the 2D similarity transformation model. In geodesy and geophysics, we 

most often replace the physical parameters by synthetic ones in order to simplify the transformation 

model to a linear equation system, i.e., we take 𝑎 = 𝑠 × 𝑐𝑜𝑠(α), 𝑏 = 𝑠 × 𝑠𝑖𝑛(α), 𝑐 = T𝑥 and 𝑑 =
 Ty.  

 

Figure 1: Schematic diagram of the Similarity Transformation Model. 

The transformation Eq. (1) can be easily formulated as a standard Gauss-Markov model (GMM) 

as follow:  

 
𝒚∗ = AX                                                                     (4) 

with  

𝒚∗ = 𝒚 − 𝒆𝒚, with 𝐸{𝒆𝒚} = 0                                                   (5) 

 
where 𝒚 ∈ ℝ𝑛 the vector of observations, A ∈ ℝ𝑛×𝑢 the Jacobian matrix (also called design matrix 

or coefficient matrix) of full rank u, X ∈ ℝ𝑢 the unknown parameter vector, and 𝒆𝒚 ∈ ℝ𝑛 is an 

unknown random vector of normally distributed observation errors and E denote the operators of 

expectation. In this case, the overall redundancy (also referred to as degrees of freedom) 𝑑𝑓 of the 

model in Eq. (4) is 𝑑𝑓 = 𝑛 − 𝑢, i.e., the Eq. (4) represents an over-determined system of equations. 

In that case, the mathematical problem of determining the unknown transformation parameters 

is formulated under assumption that the coordinates [Xi, Yi] are the observations and therefore 

subjected to random errors, whereas the coordinates [xi, yi] are error-free quantities that are treated 

as constants in the GMM, i.e.: 
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𝒚 =

[
 
 
 
 
 
 
X1

Y1

X2

Y2

⋮
X𝑛

Y𝑛]
 
 
 
 
 
 

,              𝑨 =

[
 
 
 
 
𝑥1

𝑦1

⋮
𝑥𝑛

𝑦𝑛

   

𝑦1

−𝑥1

⋮
𝑦𝑛

−𝑥𝑛

   

1
0
⋮
1
0

   

0
1
⋮
0
1]
 
 
 
 

                                       (6) 

It is also possible to formulate [xi, yi] in function of [Xi, Yi] so that in this case [xi, yi] are random 

variables and [Xi, Yi] are error-free quantities. In any case, GMM in Eq. (4) corresponds to a 

supposedly valid model describing the physical reality of the observations without bias and that 

only the measurement vector 𝒚 are affected by random errors. In that case, the associated stochastic 

model is assumed to be: 

 

𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚 = 𝜎2𝑾−𝟏)                                                  (7) 

 

where 𝑁(. ) represents the multivariate normal distribution function, 𝝁𝒚  ∈ ℝ𝒏 is a vector of zeros 

means, 𝜎2 is the a priori variance factor, which may be either known or unknown, W  ∈ ℝ𝑛×𝑛 is a 

known weight matrix, and 𝚺𝒚 ∈ ℝ𝑛×𝑛 is the covariance matrix of the observations. 

When it is assumed to be ‘true’, the model in (1) is used to estimate the unknown parameters, 

typically in a least-squares approach. In that case, the objective function that should be minimized 

is given by: 

 

𝒆𝒚
𝑇𝑾𝒆𝒚 → 𝑚𝑖𝑛                                                                 (8) 

 

The least-squares solution for the estimated parameters reads: 

 

�̂� = (A𝑇𝑾A)
−1
A𝑇𝑾𝒚                                                            (9) 

 

The uncertainties of the least-squares solution for the estimated parameters are given by: 

  

𝐷{�̂�} = 𝜎2(A𝑇𝑾A)
−1

                                                           (10) 

 

with D denote the operators of dispersion. 

The least-squares residuals (estimated observation errors) are always unique and we obtain them 

by: 

 

�̂�𝒚 = 𝒚 − A�̂�                                                                               (11) 

 
The unbiased estimate of the variance factor 𝜎2 is given by: 

 

�̂�2 =
𝒆𝒚

𝑇𝑾𝒆𝒚

𝑛 − 𝑢
                                                                               (12) 

 

The symbol “^” represents the weighted least-squares estimator (WLSE) for the parameters 𝑿, 𝒆𝒚, 

and 𝜎2. The element �̂�2 is referred to as posteriori variance component. If there are only random 

errors in the observations, the WLSE is the best linear unbiased estimator (BLUE) for the unknown 

parameters while if the observational errors follow the multivariate normal distribution with zeros 

means and a symmetric positive-definite variance-covariance matrix, the WLSE coincides with the 

maximum likelihood estimator [21]. Since the WLSE is applied to a GMM model, we referred to 

it as WLSE-GM.  

In the WLSE-GM, the uncertainties associated with the physical parameters of rotation α and 

scale s are computed using the classical law of uncertainty propagation. However, in that case, it is 
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not possible to obtain these uncertainties directly because the physical quantities are not linear with 

respect to the synthetic parameters, as can be seen in Eq. (2) and (3). In that case, the Taylor series 

expansion is often applied to linearize these equations, where the higher order terms are neglected. 

Therefore, the uncertainties of the physical parameters are approximated by linearization. 

Until now, we assume the coordinates from one reference frame as observations. However, often 

in practice, both coordinates of control points, [Xi, Yi] and [xi, yi], are observations and therefore 

are subjected to random errors. In that case, the model is given by:  

𝒚 − 𝒆𝒚 = A∗X                                                               (13) 

with 

A∗ = A− 𝑬A                                                                  (14) 

and 

𝑬A ∼ 𝑁(𝝁A = 𝟎, 𝚺A = 𝜎A
2𝑾A

−𝟏)                                                  (15) 

 

where 𝑬A∈ ℝ𝑛×𝑢 is the corresponding random noise matrix of the functional matrix A, 𝝁A  ∈ ℝ𝑛 

is a vector of zeros means, 𝜎A
2 is the a priori variance factor, which may be either known or 

unknown, WA ∈ ℝ𝑛×𝑛 is the weight matrix, and 𝚺A ∈ ℝ𝑛×𝑛 is the covariance matrix (note: the 

subscript “A” refers to elements of matrix A).  

In the case in which the coordinates of the control points in both reference frames are subjected 

to random errors, the matrix A∗ for the similarity model is given as follows: 

 

𝑨 =

[
 
 
 
 
𝑥1 − 𝑒𝑥1
𝑦1 − 𝑒𝑦1

⋮
𝑥𝑛 − 𝑒𝑥𝑛
𝑦𝑛 − 𝑒𝑦𝑛

      

𝑦1 − 𝑒𝑦1
−𝑥1 − 𝑒𝑥1

⋮
𝑦𝑛 − 𝑒𝑦𝑛

−𝑥𝑛 − 𝑒𝑥𝑛

        

1
0
⋮
1
0

           

0
1
⋮
0
1]
 
 
 
 

                                        (16) 

 

The solution of Eq. (13) can be treated as a total least-squares approach in the sense of Error-in-

Variables model. In that case, [9] has shown that the total least-squares solution can be obtained 

easily from a rigorous evaluation of the Gauss–Helmert model. A good discussion about total least-

squares algorithms can be seen in [9, 10, 18]. Different from the approaches mentioned so far, in 

the following sections, we present an alternative method based on the Monte Carlo method. 

3. IMPLEMENTATION OF THE LEAST-SQUARES METHOD BASED ON THE MONTE 
CARLO METHOD FOR COORDINATE TRANSFORMATION 

Previously, the major drawbacks of Monte Carlo methods (MCM) were the low speed and high 

computation requirements. These limitations have been surmounted over the years, mainly by the 

rapid development of computers, which now allow this technique to be used efficiently on personal 

computers or even on handheld computers. One of the advantages of the MCM is that one can 

reduce or even dispense analytical formulae [22 - 25]. Since powerful computers are available 

everywhere, here we use the MCM to calculate the statistical properties of the transformation 

parameters. 

The basic idea of this contribution is to provide an alternative method to include in the estimation 

process of a Gauss-Markov Model (GMM) the random errors of the coordinates in two reference 

frames using pseudo-random number generators based on a probability density function (PDF) of 

observations. The result of thousands of parameter estimations makes it possible to describe the 

frequency distributions of random computer experiments performed using pseudo-random 

numbers. We called this method LS-MC.  

A random number generator is an algorithm that generates a deterministic sequence of numbers, 

which simulates a sequence of independent and identically distributed numbers chosen uniformly 
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between 0 and 1. It is ‘random’ in the sense that the generated sequence of numbers passes the 

statistical tests for randomness. For this reason, random number generators are typically referred to 

as pseudo-random number generators (PRN). The PRN is part of many machine learning and data 

mining techniques [26]. A good generator produces numbers that are not distinguishable from truly 

random numbers in limited computation time. This is, in particular, true for Mersenne Twister, a 

popular generator with a long period length of 219937 – 1 [27]. 

Typically, in geodesy, the random errors of good measurements are normally distributed with 

expectation zero. In order to have normal random errors, uniformly distributed random number 

sequences (produced by the Mersenne Twister algorithm, for example) are transformed into a 

normal distribution using the Box–Muller transformation [28]. Here, we use Box–Muller, which 

has been used in geodesy for the MCM [29, 30]. 

In essence, the MCM replaces random variables by PRN, probabilities by relative frequencies, 

and expectations by arithmetic means over large sets of such numbers. A computation with one set 

of PRN is a Monte Carlo trial [31], also referred to as the number of Monte Carlo experiments [32]. 

In other words, the key of LS-MC is making repeated draws from PDFs of control points 

coordinates in both frames, so that for each draw the transformation parameters are calculated by 

the least-square method. Therefore, the distribution function of transformation parameters can be 

derived by LS-MC, which makes the method attractive because we no longer need to resort the 

well-known tabulated statistical distributions, such as normal distribution, and so on. The LS-MC 

procedure is summarised as a diagram in Figure 2. 

The LS-MC procedure is as follow: 

 

(1) Define the mathematical relation among all quantities known to be involved in a model. Here, it 

would be defined by the transformation model, for example, Similarity given by the expression 

(1). 

(2) Set up the number of MCM trials, here denoted by 𝑀. 

(3) Specify the PDFs to the input quantities, i.e., it should be provided the PDFs of the control points 

coordinates in both reference frames, e.g., a joint normal distribution given by the expression (7) 

and another one by (15). 

(4) Generate 𝑀 vectors, by drawing randomly from the PDFs assigned to the input quantities 

according to step (3). In the case of 2D transformation, we would have 𝒗𝟏, … , 𝒗𝑴 belonging to 

the xy coordinate system and 𝒘𝟏, … ,𝒘𝑴 to the XY system so that for each vector 𝒗 there would 

be coordinates 𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛 and for each vector 𝒘 there would be coordinates 

𝑋1, 𝑌1, … , 𝑋𝑛, 𝑌𝑛. 

(5) For each 𝒗 and 𝒘 vectors compute the least-square solution according to Eq. (9) and (11), 

yielding 𝑀 draws of transformation parameters 𝑿𝑘
∗  and random vector observation errors 𝒆𝒚

∗
𝑘
, 

respectively, i.e.: 

𝑿𝑘
∗ = (A𝑘

∗ 𝑇
𝑾A𝑘

∗ )
−1

A𝑘
∗ 𝑇

𝑾𝒚𝑘
∗ , (∀𝑘 = 1,… ,𝑀)                                   (17) 

        𝒆𝒚
∗
𝑘

= 𝒚𝑘
∗ − A𝑘

∗ , 𝑿𝑘
∗  (∀𝑘 = 1,… , 𝑀)                                           (18) 

where the symbol ‘*’ represents continuous random variables. The matrix A∗ and the vector 𝒚∗ may 

be defined according to the expressions (14), and (5), respectively. The output quantities 𝑿𝑘
∗  and 

𝒆𝒚
∗
𝑘
 are computed for each of the 𝑀 draws from the PDFs of the coordinates of the control points.  

(6) Use these 𝑀 values to calculate an estimate �̂� of 𝑿 and the associated covariance matrix 𝚺�̂�. 

Similarly, compute an estimate �̂�𝒚 of 𝒆𝒚 and the covariance matrix 𝚺�̂�, i.e.: 

 �̂� =
1

𝑀
∑ 𝑿𝑘

∗

𝑀

𝑘=1

                                                                            (19) 
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𝚺�̂� =
1

𝑀 − 1
[(𝑿1

∗ − �̂�)(𝑿1
∗ − �̂�)

𝑇
+ ⋯+ (𝑿𝑀

∗ − �̂�)(𝑿𝑀
∗ − �̂�)

𝑇
]                                (20) 

   �̂�𝒚 =
1

𝑀
∑ 𝒆𝒚

∗
𝑘

𝑀

𝑘=1

                                                                            (21) 

 𝚺�̂� =
1

𝑀 − 1
[(𝒆𝒚

∗
1
− �̂�𝒚) (𝒆𝒚

∗
1
− �̂�𝒚)

𝑇
+ ⋯+ (𝒆𝒚

∗
𝑀

− �̂�𝒚) (𝒆𝒚
∗
𝑀

− �̂�𝒚)
𝑇
]                            (22) 

(7) Sort 𝑀 values from (19) and (21) into strictly increasing order for each parameter of 𝑿 and 𝒆𝒚, 

respectively. The sorted values are denoted by 𝑿𝑠
∗ and 𝒆𝒚

∗
𝑠
, for s = 1,… ,𝑀, respectively. These 

𝑿𝑠
∗ and 𝒆𝒚

∗
𝑠
 values provide a discrete representation of the cumulative density functions (CDFs), 

say 𝐺𝑿𝑠
∗  and 𝐺𝒆𝒚

∗
𝑠
 for 𝑿 and 𝒆𝒚, respectively. In other words, we get the discrete representations 

of CDFs of each transformation parameter as well as for each unknown random observation errors 

in the sense of the GMM.  

(8) From the discrete representation 𝐺𝑿𝑠
∗  by the step above, form a left-hand 𝑋𝑙𝑜𝑤 and a right hand 

𝑋ℎ𝑖𝑔ℎ endpoints of a coverage interval for 𝑿 to a given probability 𝑝 = 1 − α, where α is the 

significance level. The probability 𝑝 provides a region where the true parameter is most likely to 

lie. In that case, the left-hand endpoint is formed by taking 𝑋𝑙𝑜𝑤 = 𝑿(𝑟)
∗  and the right-hand 

endpoint by 𝑋ℎ𝑖𝑔ℎ = 𝑿(𝑟+𝑞)
∗ , where 𝑞 = (𝑝) × 𝑀 and 𝑟 = (𝑀 − 𝑞)/2. Different from the well-

known confidence interval, the coverage interval contains the value of a quantity with a given 

probability 𝑝 based on the information available. For example, for 𝑀 = 104 trials and α = 0.05, 

we obtain 𝑝 = 0.95, 𝑞 = 9500, and 𝑟 = 250. In that case, the coverage interval was defined by 

the 0.025- and 0.975-quantiles. This is the case for a probabilistically symmetric 100 × 𝑝% 

coverage interval and for the case where the distribution is single-peaked. A good discussion 

about coverage intervals (also referred to as expanded uncertainties) can be seen in [33]. 
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Figure 2: Main stages of LS-MC for coordinate transformation problem in the sense of GMM. 

4. GENERATION OF OBSERVATION ERRORS AND NUMBER OF MONTE CARLO 
TRIALS 

It is necessary to assume the stochastically properties of the observation errors. These properties 

are completely derived from the probability distribution of these errors. Here, the random error 

vectors 𝒆𝒚 and the random noise matrix 𝑬A of the functional matrix A have been synthetically 

generated based on a multivariate normal distribution according to Eq. (7) and (15), respectively. 

The design matrix A∗ for the similarity transformation is given by (16). This assumption is very 

reasonable because, typically, the random errors of the good measurements are normally distributed 

with expectation zero. Here, we use the Mersenne Twister algorithm to generate a sequence of 

random numbers and the Box–Muller method to transform it into a normal distribution. It is 

important to emphasize that unlike standard practice, which considers only the coordinates XY as 

those that contain random errors, here the coordinates of the control points in both reference frames 

are subjected to random errors. For a synopsis of transformation model selection and observation 

error model selection, see Lehmann (2014) [6] and Lehmann (2015) [29], respectively. 

For this purpose, we arbitrary choose 𝑀=106 trials for generating both random error vectors 𝒆𝒚 

and random noise matrix 𝑬A. It has been investigated that the results presented here do not change 

significantly when the computations are repeated with different PRN (see Figure 3). For the 

multivariate normal PRN, we can use directly MATLAB R2018b PRN generator “mvnrnd”. In our 

analyses, Intel Core i5-4200M CPU @2.5GHz and MATLAB R2018b are used for the experiments. 

Figure 3 shows an example of the standard deviation of the LS-MC as a function of the number 

of MCM trials for the computation of the synthetic parameter 𝑎 from expression (1). In this 

example, each set of MCM trials was run 1000 times to calculate the standard deviation (σ) of the 

LS-MC. This standard deviation represents the variability of the PRN for each set of MCM trials. 
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It is important to mention that the PRN generator is reseeded each time. Note that the standard 

deviations tend to be reduced proportionally to 𝑀-1/2. The standard deviation for 𝑀=106 trials was 

better than 10-5 unit. As pointed out [34], the quality of MCM does not depend on the dimension of 

the data space. The quality of these calculated results generally improves with the number of draws 

made. The question of how to find the optimal number of MCM trials to evaluate the quality of 

experimental results has already been addressed by Rofatto et al. (2018) [30].  

The computation time for 𝑀=106 trials took a few seconds on a personal computer operating at 

2.5 GHz. Hence, we are not overwhelmed with the computational workload. 

 

Figure 3: Empirical standard-deviation (σ) of LS-MC for each set of MCM trials run 1000 times. 

5. EXAMPLE OF LS-MC APPLIED TO A SIMILARITY TRANSFORMATION OF 
PLANAR COORDINATES 

Here, we intended to demonstrate how the LS-MC can be applied in terms of coordinate 

transformation. The coordinates in the frame XY and xy are presented in Table 1, which are taken 

from Ghilani (2010, pp. 370, Table 18.1) [3]. This numerical case refers to the 2D similarity 

transformation given by Eq. (1). Here, the transformation parameters are obtained by both the LS-

MC and WLSE-GM methods. 

Table 1: Numerical example of coordinates in the frames XY and xy from Ghilani (2010) [3]. 

 Coordinates in XY frame Coordinates in xy frame 

Points X [m] Y [m] x [m] y [m] 

A 1049422.40 51089.20 121.622 -128.066 

B 1049413.95 49659.30 141.228 187.718 

C 1049244.95 49884.95 175.802 135.728 
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Four different scenarios are considered here (and summarized in Table 2):  

Table 2: Different scenarios for variances of the coordinates in the frames XY and xy. 

 
Error Model 

Number of scenarios 

First scenario 

𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚)  

𝑬A ∼ 𝑁(𝝁A = 𝟎, 𝚺𝑨 = 𝚺𝒚) 
 

𝜎2 = 𝜎A
2 = 1.00e-6 𝑚² 

Second scenario 

𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚 = 100 × 𝚺𝑨) 

𝑬A ∼ 𝑁(𝝁A = 𝟎, 𝚺𝑨) 
 

𝜎2 = 100 × 𝜎A
2 = 1.00e-4 𝑚² 

Third scenario 

𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚)  
 

𝜎²𝑋𝐴
= 1.00e-4 𝑚², 𝜎²𝑌𝐴

= 4.41e-4 𝑚², 

𝜎²𝑋𝐵
= 2.56e-4 𝑚², 𝜎²𝑌𝐵

= 1.00e-4 𝑚², 
𝜎²𝑋𝐶

= 3.24e-4 𝑚², 𝜎²𝑌𝐶
= 2.25e-4 𝑚². 

Fourth scenario 

𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚)  

𝑬A ∼ 𝑁(𝝁A = 𝟎, 𝚺𝑨 ≠ 𝚺𝒚) 

                            Frame XY                                                      Frame xy 
𝜎²𝑋𝐴

= 1.00e-4 𝑚², 𝜎²𝑌𝐴
= 4.41e-4 𝑚² 

𝜎2
𝑋𝐵

= 2.56e-4 𝑚2, 𝜎2
𝑌𝐵

= 1.00e-4 𝑚2 

𝜎²𝑋𝐶
= 3.24e-4 𝑚², 𝜎²𝑌𝐶

= 2.25e-4 𝑚² 

𝜎²𝑥𝐴
= 8.84e-5 𝑚², 𝜎²𝑦𝐴

= 3.36e-5 𝑚² 

𝜎²𝑥𝐵
= 8.84e-5 𝑚², 𝜎²𝑦𝐵

= 1.16e-5 𝑚² 

𝜎²𝑥𝐶
= 9.60e-5 𝑚², 𝜎²𝑦𝐶

= 4.62e-5 𝑚² 
 

 

1. First scenario: In the first situation, as observation error models we choose are multivariate 

normal distribution 𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚) and 𝑬A ∼ 𝑁(𝝁A = 𝟎, 𝚺A), so that 𝚺A = 𝚺𝒚. In this 

example, the coordinates in frames XY and xy are regarded as equally weighted uncorrelated 

observations with 𝜎2 = 𝜎A
2 = 1 mm². This is a case that may rarely occur in practice since it 

implies that the coordinates in the frames XY and xy are computed with the same instrument 

precision, measurement techniques, and working conditions. 

2. Second scenario: In the second one, we also choose the multivariate normal distribution, so that 

𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚) and 𝑬A ∼ 𝑁(𝝁A = 𝟎, 𝚺A). The coordinates in frames XY and xy are 

regarded as equally weighted uncorrelated observations, but here 𝜎2 = 100 × 𝜎A
2 = 100 mm². 

This means that the coordinates in the frame XY are less precise than the coordinates in frame 

xy. In practical terms, for example, this would mean that the coordinates in the frame XY and 

xy are computed with a different instrument precision, but with the same measurement technique 

and work conditions.  

3. Third scenario: the variances between the coordinates for a given frame are not constant. In that 

case, the coordinates in the frame XY are regarded as uncorrelated observations, but with 

different variances, whereas the coordinates in the frame xy are considered error-free values. 

This means that only the coordinates in the frame XY are subjected to random error, so that 

𝒆𝒚 ∼ 𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚). This is a typical case of a free-total station problem, where total-station 

must be georeferenced, i.e., the position and orientation of the total station in the required 

reference system must be established before its use for detail surveying or staking out. The 

coordinates established prior serve as control points for the establishment of the total station. 

Generally, GNSS (Global Navigation Satellite Systems) observations, such as carrier phase and 

code pseudorange, are processed to estimate the coordinates of the control points, which 

normally lead to different variances of the coordinates of control points.  

4. Fourth scenario: This case is similar to the third situation described above, i.e., 𝒆𝒚 ∼

𝑁(𝝁𝒚 = 𝟎, 𝚺𝒚) and 𝑬A ∼ 𝑁(𝝁A = 𝟎, 𝚺A). However, now not only are the variances of 

coordinates in the frame XY different, but also the variances of coordinates in xy frame. On the 

same example of free-station in the third situation mentioned above, now not only the 

coordinates of control points are subjected to random errors, but also the coordinates of the total-

station. The positional uncertainties of the coordinates computed by total station are different 

for each surveyed point because they depend on the distance and the bearing. Therefore, the 
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variances of the coordinates in the frame of the total station will also be different from each 

other, i.e., the block-diagonal elements (variances) of the covariance matrix will not be equal. 

The results confirm that there are no significant differences between the LS-MC and the 

conventional WLSE-GM in the estimation of the transformation parameters for all scenarios 

studied. This result is expected because both the LS-MC and WLSE-GM are based on the same 

objective function given by the expression (8). Moreover, the random noise matrix 𝑬A, associated 

with the coordinates in the frame xy, follows a multivariate normal distribution with zeros means 

𝝁A = 𝟎. In that case, the expectation of the matrix A∗ given in Eq. (16) is equal to the matrix A 

given in Eq. (6), i.e.: 

 
                                                    E{A∗} = E{A} − E{𝚺A} = A                                                (23) 

 
where E{.} is the expectation operator. 

On the other hand, the uncertainties of the transformation parameters computed by the LS-MC 

are different from those obtained by the WLSE-GM. According to the results displayed in Figure 

4 it is possible to note that the standard uncertainties associated with the transformation parameters 

are higher for the LS-MC than the WLSE-GM solution. This is due to the fact that the WLSE-GM 

does not take into account the uncertainties associated with the coordinates in the frame xy. In other 

words, the elements of the matrix A∗, which are composed by the coordinates in the xy reference 

frame, are treated as error-free quantities in the WLSE-GM solution, whereas in the LS-MC the 

uncertainties associated with the elements of the A∗matrix are propagated through model to the 

uncertainties of the transformation parameters.  

In terms of uncertainty, the highest difference between the LS-MC and the WLSE-GM occurred 

in the fourth scenario: approximately 21 mm (~63%) for shifting Tx, 18 mm (~55%) for shifting 

Ty, 6 arc-seconds (~71%) for rotation α, 48 ppm (~39%) for scale s, 49 ppm (~40%) for synthetic 

parameter a, and 130 ppm (~71%) for synthetic parameter b.  

Moreover, there are no significant differences between the standard deviations estimated by the 

WLSE-GM and LS-MC in the third scenario, as can be seen in Figure 4, since the errors in the xy 

system are not considered. In that case, the first-order terms of Taylor series expansion used in the 

linearization of the model for the propagation of the uncertainties of the synthetic parameters to the 

physical parameters were consistent with the LS-MC. Although we have not applied it here, a least-

squares solution in the sense of nonlinear Gauss-Helmert models can also be an alternative for the 

case where the coordinates in both frames contain random errors [9]. 
 

 

Figure 4: Standard-deviation of the transformation parameters computed by the WLSE-GM for the four 

scenarios considered. 

 

A coverage interval for the transformation parameters was also determined according to the step 

(8). From the resulting cumulative distribution of the transformation parameters displayed in Fig. 

5, we extracted the 0.025 and 0.975 quantiles as a good approximation to the coverage interval 
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[𝑋𝑙𝑜𝑤 , 𝑋ℎ𝑖𝑔ℎ] for α = 0.05. The markers represent the 0.025, 0.5, and 0.975 percentiles for each 

scenario. 

 

 

Figure 5: Cumulative distribution of the transformation parameters and 0.025, 0.5, and 0.975 percentiles 

for each scenario 

To construct the confidence intervals for the solutions derived from the WLSE-GM, it was 

necessary to find the theoretical critical value from a known PDF. As the observations set has less 

than 30 values, the critical value was calculated based on a t-student distribution as follows 

(Ghilani, 2010, pp.78) [3]: 

�̂� ± |𝑡α/2,𝑑𝑓| (√𝐷{�̂�})                                                    (24) 

where �̂� and 𝐷{�̂�} are the estimated transformation parameters and its associated covariance 

matrix, respectively. They are given by Eq.(9) and Eq.(10), respectively. The 𝑡α/2 is the theoretical 

critical value from the t-distribution based on 𝑑𝑓 degrees of freedom of the adjustment and α/2 

percentage points. The modulus operator |. | is to avoid negative values. The t value that locates an 

α/2 area in both the upper and lower tails of the distribution can be found in the statistical tables or 

computed by popular scientific software. In our case, we use the function “tinv” from the 

MATLAB. Since 𝑑𝑓 = 𝑛 − 𝑢 = 2 and α = 0.05, we obtain |𝑡0.025,2| = 4.3. This leaves 0.025 in 

each of the upper- and lower-tail areas, i.e., 0.975 and 0.025 quantiles, respectively. 

The most typical error distributions of real observations seem to be leptokurtic as is the case of 

the Laplace distribution [29, 35, 36, 37]. Because of that, Laplace observation error distributions 

were also generated here for both 𝒆𝒚 ∼ 𝐿(𝝁𝒚 = 𝟎, 𝚺𝒚) and 𝑬A ∼ 𝐿(𝝁A = 𝟎, 𝚺A). Laplace 

distribution is used whenever normality is rejected (Lehmann, 2015). In the standard Laplace case, 
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we use uniformly distributed PRN generated by MATLAB PRN generator “unidrnd” and apply a 

transformation by the inverse CDF (Tanizaki, 2004, pp. 122) [34]. 

Table 3 displays the width of confidence intervals for the WLSE-GM and LS-MC based on 

normal and Laplace distributions. These widths were computed by taking the largest value 𝑋ℎ𝑖𝑔ℎ 

minus the smallest value 𝑋𝑙𝑜𝑤 in an interval for α = 0.05. It is important to mention that the 

construction of the coverage interval by the LS-MC is totally empirical, based on the distribution 

of the observations, as can be seen in the step (8) from the previous section about the LS-MC 

algorithm, whereas the confidence interval is based on the theoretical inference of the parameters 

defined in Eq. (24). 

Tabela 3: Width of coverage intervals of the transformation parameters for the WLSE-GM and LS-MC.  

Scenarios Method 

2D Transformation parameters 

a[ppm] b[ppm] Tx[cm] Ty[cm] 𝛂[”] s[ppm] 

First 

scenario 

𝑊𝐿𝑆𝐸𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤
 35.475 35.475 0.755 0.755 1.619 35.475 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝑛𝑜𝑟𝑚𝑎𝑙  74.797 74.711 1.59 1.59 3.409 74.821 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝐿𝑎𝑝𝑙𝑎𝑐𝑒
 80.188 80.000 1.710 1.706 3.652 80.143 

Second 

scenario 

𝑊𝐿𝑆𝐸𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤
 354.751 354.751 7.545 7.545 16.19 354.751 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝑛𝑜𝑟𝑚𝑎𝑙  177.626 177.258 3.773 3.773 8.09 177.623 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝐿𝑎𝑝𝑙𝑎𝑐𝑒  187.783 188.178 3.988 3.997 8.589 187.816 

Third  

scenario 

𝑊𝐿𝑆𝐸𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤
 625.018 453.981 10.794 12.943 20.587 627.124 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝑛𝑜𝑟𝑚𝑎𝑙  285.013 206.895 4.912 5.895 9.380 285.829 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝐿𝑎𝑝𝑙𝑎𝑐𝑒  307.898 223.707 5.318 6.387 10.153 309.024 

Fourth  

scenario 

𝑊𝐿𝑆𝐸𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤
 625.018 453.981 10.794 12.943 20.587 627.124 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝑛𝑜𝑟𝑚𝑎𝑙  476.861 714.544 13.322 12.957 32.712 474.226 

𝐿𝑆-𝑀𝐶𝑋ℎ𝑖𝑔ℎ−𝑋𝑙𝑜𝑤

𝐿𝑎𝑝𝑙𝑎𝑐𝑒
 502.018 763.301 14.091 13.730 34.915 498.606 

 

It was expected that the confidence intervals for the WLSE-GM would be larger than the 

coverage interval for the LS-MC for all scenarios because the t-student distribution used to 

construct the confidence intervals for the WLSE-GM is less conservative than normal and Laplace 

distribution. In this case, conservative means that a distribution provides a larger range than others. 

However, this did not happen in the first scenario, where the intervals for the WLSE-GM were 

smaller than those for the LS-MC. This is due to the fact that the effect of the uncertainties 

associated with the coordinates in the xy frame was higher than the selection of the distribution of 

the observation errors on the width of the intervals. For this case, in general, the intervals were 

nearly two times larger for the LS-MC than the WLSE-GM. Regarding the other scenarios (second, 

third, and fourth), the confidence intervals for the WLSE-GM were larger than the coverage 

intervals for the LS-MC.  

Note that there is a slight difference between the normal and Laplace distributions in the widths 

of the intervals. In general, the lengths of the intervals derived from the LS-MC based on the 

Laplace distribution is larger than the one based on normal distribution. The reason is that we 

generated Laplacian observation errors and the solution for transformation parameters were based 

on the L2 norm minimization (given by Eq. 8). In this case, the solution given in the L2 norm 

minimization as a “best linear unbiased estimation” (BLUE) is expected to provide the least root 

mean squares values for the estimated parameters, independent of the error distribution. However, 

compared with the “linear” estimation, a non-linear estimation, like the L1 norm minimization, 

could perform better [29]. 
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Moreover, the coverage interval in the case of the LS-MC was higher in the fourth scenario for 

both the normal and Laplace observation error models with approximately 14 cm for Tx, 13 cm for 

Ty, 34 arc-seconds for rotation α, 486 ppm for scale s, 489 ppm for synthetic parameter a, and 739 

ppm for synthetic parameter b. As the WLSE-GM considers the coordinates from xy frame error-

free quantities, coverage intervals in the third and fourth scenarios were the same for this method. 

Note that both third and fourth scenarios are based on the same uncertainties for the observation 

vectors. 

6. CONCLUSIONS AND OUTLOOK 

It has been shown that a Monte Carlo Method (MCM) can be used in combination with least-

squares to solve a coordinate transformation problem in the context of the Gauss-Markov Model 

(GMM). The method was called LS-MC. The main highlights of the LS-MC in the context of the 

transformation parameters are:  

1. Contrary to the purely standard GMM, the uncertainties associated with the coordinates in 

both frames are propagated through the model to the uncertainties of the transformation 

parameters. This can also be accomplished by the least-squares of a rigorous Gauss-Helmert 

model (GH) and/or also by Total Least Squares (TLS). 

2. In contrast to solutions based on the GMM and GH models, the uncertainties of the estimated 

physical parameters are obtained by means of the discrete representation of their 

distributions. 

3. Since powerful computers are available everywhere, it is no longer necessary to resort to 

statistical tables in order to construct the coverage interval. Therefore, the coverage interval 

can be computed numerically. 

4. Although we restricted ourselves to the Laplace and normal distributions for the observation 

errors, in some applications it is also possible to assign a non-Gaussian distribution to the 

input data (e.g., asymmetric, uniform, triangle, among others). 

 

However, there are also some aspects of the method that deserve to be studied in the future, for 

example: 

1. The number of Monte Carlo trials: as the computations are stochastic, being based on random 

draws, there is no guarantee that any specific pre-assigned MCM trial number suffices. 

Therefore, a procedure that selects the MCM trials adaptively, i.e., as the trials progress, will 

be studied. However, this problem should not be important. Although we have set the number 

of MCM trials to 106, the results presented here did not change significantly when the 

computations were repeated with different pseudo-random numbers. 

2. The coverage interval is formed by considering each parameter individually, without taking 

into account the correlation between the variables. In some geodetic and geophysical 

applications, there are multivariate models, namely models with more than one output 

quantity. Such quantities are generally mutually correlated because they depend on common 

input quantities. In this case, it is more complicated to form the discrete representation of the 

probability distribution because it would be necessary to deal with multidimensional data 

ordering [38]. This will be investigated in the next study. 

3. The proposed method is based on Least-Squares Estimation within the Gauss-Markov 

Model. Therefore, it lacks the robustness or insensitivity to outliers in the observations. In 

the future, quality control procedures for detection and identification of outliers, such as data 

snooping, should be integrated with the LS-MC. 

4. Although the idea of the Monte Carlo simulation to infer the uncertainty of estimators is 

correct, in the future works the Monte Carlo method should be applied to the nonlinear least-

squares solution. 
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