
 
  VOL. 15,  NUM. 4 2019 

www.scientiaplena.org.br                                                             doi: 10.14808/sci.plena.2019.049917                              

049917 – 1 

The influence of half-range quadrature scheme on ADO 

method convergence 

A influência do esquema de quadratura half-range na convergência do Método ADO 

 

D. L. Ribeiro; J. F. Prolo Filho* 

Programa de Pós-Graduação em Engenharia Oceânica, Universidade Federal do Rio Grande, 96203-900, Rio 
Grande-RS, Brasil  

 
*joaoprolo@furg.br 

Neste trabalho, é apresentada uma solução em ordenadas discretas para um problema de transporte de 

nêutrons em geometria cartesiana unidimensional. Buscando avaliar a eficiência do esquema de quadratura 

half-range, o método de Ordenadas Discretas Analítico (ADO) é utilizado para resolver duas classes de 

problemas em meios finitos e homogêneos (com espalhamento isotrópico e anisotrópico linear), para regime 

estacionário, sem fonte interna e com condições de contorno prescritas. Resultados numéricos para o fluxo 

escalar foram obtidos e comparações com outros trabalhos existentes na literatura foram feitas. A 

versatilidade quanto ao uso de quadraturas sempre foi vista como uma vantagem do método ADO que, além 

de fornecer resultados precisos a um baixo custo computacional, possui uma formulação mais simples, 

permitindo usar softwares de livre distribuição para as simulações. Na análise dos resultados, verificou-se 

que o uso da quadratura half-range foi capaz de acelerar a convergência, principalmente em problemas 

linearmente anisotrópicos. 
Palavras-chave: equação de transporte unidimensional,  quadratura half-range, anisotropia linear. 

 

In this work, a discrete ordinates solution for a neutron transport problem in one-dimensional Cartesian 

geometry is presented. In order to evaluate the efficiency of the half-range quadrature scheme, the Analytical 

Discrete Ordinates method (ADO) is used to solve two classes of problems in finite and homogeneous media 

(with isotropic and linear anisotropic scattering), for steady-state regime, without inner source and prescribed 

boundary conditions. Numerical results for the scalar fluxes were obtained and comparisons with other works 

in the literature were made. The versatility of the use of quadratures has always been seen as an advantage of 

the ADO method which, besides providing accurate results at a low computational cost, has a simpler 

approach, allowing the use of free software distribution for the simulations. In the results analysis, it was 

verified that the use of the half-range quadrature was able to accelerate the convergence, mainly in linearly 

anisotropic problems. 
Keywords: one-dimensional transport equation, half-range quadrature, linear anisotropy. 

1. INTRODUCTION 

In recent years, several methods have been proposed with the objective of finding solutions to 

the equations that model the phenomena of particle transport and radiation [1-6]. Among these, 

maybe the most important has been the Discrete Ordinates method (SN method), which was the first 

deterministic method to be systematically applied to neutron transport problems [7, 8] with 

remarkable ability to deal with one-dimensional and multidimensional problems, in different levels 

of complexity. 

Originally introduced by Wick (1943) [9] for solving neutron transport problems and later used 

by Chandrasekhar (1950) [10] in his radioactive transfer studies, the traditional SN method basically 

transforms the integral-differential transport equation into a coupled system of differential 

equations, making a discrete representation of the directional variable and the scattering integral 

terms in the form of a quadrature. Thus, the obtained solutions are representations of the radiation 

intensities in a set of discrete directions comprised in the total solid angle range. 

However, the implementation of this method presented some difficulties on the numerical point 

of view [11]. The limitation of the SN quadrature as to the number of directions (in order to avoid 

physically unrealistic weighting factors), the difficulties when applied to more complex geometries 

[12], and the calculation of separation constants bound to the roots of complicated characteristic 

polynomials, make the use of SN method susceptible to some restrictions or conditions. 

http://www.scientiaplena.org.br/
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In the years that followed, several approaches based on the SN method were developed looking 

for computational gains and simpler treatment of more complex phenomena. Among these 

approaches, there is the Analytical Discrete Ordinates method (ADO), proposed by Barichello and 

Siewert (1999) [3]. 

The ADO method can be seen today as the most efficient approach for the treatment of one-

dimensional transport and radiation problems. Among its advantages, the versatility on the use of 

quadratures, the separation constants obtained through reduced eigenvalue problems, and the 

construction of analytical solutions in terms of spatial variables can highlighted. All these factors 

contribute to the ADO method’s feature of providing accurate results at low computational cost. 

Based on these considerations, especially concerning the flexibility of the ADO method on the 

use of quadratures, this work will explore the computational aspects of the half-range (or double-

gauss) quadrature schemes and provide some benchmark results for one-dimensional transport 

problems in homogeneous media with isotropy and linear anisotropy effects.  

For this, the results obtained by ADO2N method (with half-range Gauss-Legendre quadrature) 

will be compared with those obtained through other analytical and numerical formulations using 

full-range quadrature, including the ADO method itself. 
 

2. PROBLEM FORMULATION 

According Barichello (1992) [1], the neutron transport equation in one-dimensional Cartesian 

geometry, for a homogeneous medium with isotropic and linearly anisotropic scattering in steady-

state regime is given by 
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were x [cm] and µ correspond to the spatial and directional variables wherein the angular fluxes 
(x,µ) [n/cm2.s] are calculated, σt [cm-1], σs0 [cm-1] and σs1 [cm-1] are, respectively, the total, 
isotropic and linearly anisotropic macroscopic cross section. Here, in particular, only problems 
without inner sources will be considered, and the fluxes will be caused by prescribed boundary 
conditions, Figure 1. So, particular solutions are not necessary. 

 
Figure 1. Domain representation of the problems. 

For application of the ADO method, the integral terms must be modified. So, according 

Barichello and Siewert (1999) [3]: 
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After that, these integral terms are approximated by a numerical quadrature [10], such as 
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were wk are the weights associated with points µk when the discretization of the integral term is 

made by a quadrature scheme defined in [0,1].  



  D.L. Ribeiro et al., Scientia Plena 15, 049917 (2019)                                                     3 

According to Wick (1943) [9], the weights and points should be chosen based on Gaussian 

quadrature formula, so that the discretization of the integral terms will be exact for any polynomial 

written in powers of µ with degree less or equal than 2N-1. 

In this work, the half-range scheme associated with Gauss-Legendre quadrature will be 

explored, due to their relevant advantages shown in several works [13-16]. In order to adapt the 

Gauss Legendre quadrature to Eqs. (4)-(5), a mapping of the discrete directions (and associated 

weights) must be made in order to convert the interval [−1,1] into [0,1]. For this, the following 

variable changes are performed 
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where yk and vk represent, respectively, points and weights of the full-range Gauss Legendre 

quadrature ([−1,1]), and points µk and weights wk are their representatives in the half-range 

quadrature scheme ([0,1]). In this step, the ADO method associated with half-range quadrature, to 

distinguish it from other traditional methods, will be called ADO2N. 

 After that, it is possible to write a discrete ordinates version of Eq. (1), such that 
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(9) 

 

for i=1,…,N, being N the number of discrete directions of Gauss-Legendre quadrature set, with µi 

representing the positive directions and -µi the negative ones. 

 
3. ADO METHOD SOLUTION 

Starting from the one-dimensional transport equation, Eq. (1), a system of differential equations 

is created, Eqs. (8)-(9), in which the ADO method [3] is easily applicable. 

Thus, seeking homogeneous solutions in terms of eigenvalues and eigenfunctions, it is proposed 

that the angular fluxes be decomposed in the form 
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for i=1,…,N, where the separation constants ν  are associated with elementary solutions ),(
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Now, substituting Eq. (10) into Eqs. (8)-(9), a coupled algebraic system is obtained 
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for i=1,…,N. 

 

Then, two auxiliary equations are defined 
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(14) 

such that, if Eqs. (11)-(12) are added, the relation 
 

 

is obtained. On the other hand, subtracting Eq. (12) from Eq. (11), another relation between U(ν,µi) 

and V(ν,µi) can be written, and it is given by 
 

 

Once the Eqs. (15)-(16) are obtained, algebraic manipulations can be performed in order to build 

an eigenvalues problem in terms of U(ν,µi). This way 
 

 

for i=1,…,N, which matrix representation can be made as 
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and the matrices N x N associated with the system are such that 
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for i,k=1,…,N.  

With the eigenvalues problem solved, λj for j=1,…,N are determined and used to compute j on 

Eq. (19). Besides that, U(νj,µi) is used on Eq. (15) to obtain V(νj,µi). Thus, by Eqs. (13)-(14), the 

elementary solutions can be written as 
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for i,j=1,…,N.  

In this case, since the separation constants occur in pairs, {±νj}, with real values, a symmetry is 

imposed in order to build a linearly inpendent basis of elementary solutions. For that 
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for i,j=1,…,N. 

Thus, the homogeneous solutions for Eqs. (8)-(9) can be written, explicitly, as 
 

 

for i=1,…,N.  

Note that the coefficients Aj on Eqs. (26)-(27) will be determined from the boundary conditions. 

As a particular case, only prescribed boundary conditions will be used here. So 
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for i=1,…,N and F, G constant functions.  

Once the solutions are established, including the values of all Aj coefficients, some quantities 

can be evaluated for comparison with the literature and analysis of the certain parameter effects. 

The focus of this work will be to explore the influence of quadratures on the scalar flux, according 

Lewis and Miller (1984) [17], is defined by 
 

 
1

1
')',(2/1)(  dxx , (30) 

 

which discrete ordinate version will be 
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4. NUMERICAL RESULTS AND COMPUTATIONAL ASPECTS 
 

The problems chosen for discussion are those which physical properties are described on Table 

1. Here, results obtained by different methods will be compared, as well as an analysis of used 

quadrature will be made. 
 

Table 1-Physical parameters used in each problem. 

Problem 

Quantity 

of 

Interest 

Characteristics σt σs0 σs1 F G [x0,x1] 

1 
Scalar 

Flux 

Homogeneous 

Isotropic 
1.0 0.97 0.0 2.0 2.0 [0.0, 50.0] 

2 
Scalar 

Flux 

Homogeneous 

Anisotropic 
1.0 0.99 0.8 1.0 0.0 [0.0, 100.0] 
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In Problem 1, characterized by considering the phenomenon in an isotropic homogeneous 

medium with incident angular fluxes at both domain ends, scalar flux profiles, Eq. (31), obtained 

by ADO2N method was compared with the literature [18] for validation of code and method. 

 The values obtained by the ADO2N method for Problem 1 (Table 2) demonstrate fast 

convergence of the results as the value of N increases, as well the coherence of the profiles in 

relation to parameters used in the simulations. In special, N = 4 is enough to get a convergence 

between five and six significant digits. 

 The validation can also be performed with Nunes and Barros (2009) [18], which solved this 

same test case by three different methods: Diamond Difference method (DD), Step and CN method. 

In all methods, besides using the discrete ordinates version of the transport equation with SN 

quadrature on the interval [−1, 1], the spatial variable is treated numerically [17]. 

Table 2: Problem 1 - Convergence analysis and results validation for scalar flux profiles computed by 

ADO2N method and the literature [18]. 

x 
ADO2N DD Step CN 

N=2 N=4 N=6 N=8 N=8 N=8 N=8 

0.0 1.704731 1.704731 1.704731 1.704731 1.704731 1.703435 1.704683 

0.5 0.366976 0.366806 0.366807 0.366807 - - - 

10.0 0.083274 0.083341 0.083341 0.083341 - - - 

15.0 0.018941 0.018983 0.018983 0.018983 - - - 

20.0 0.004507 0.004523 0.004523 0.004523 - - - 

25.0 0.001945 0.001954 0.001954 0.001954 0.001956 0.002012 0.001958 

30.0 0.004507 0.004523 0.004523 0.004523 - - - 

35.0 0.018941 0.018983 0.018983 0.018983 - - - 

40.0 0.083274 0.083341 0.083341 0.083341 - - - 

45.0 0.366976 0.366806 0.366807 0.366807 - - - 

50.0 1.704731 1.704731 1.704731 1.704731 1.704731 1.703435 1.704683 

 

In terms of agreement, as can be seen on Table 2, the results obtained here by the ADO2N method 

are very similar to those presented by Nunes and Barros (2009) [18], being particularly closer to 

DD method. Despite the convergence being faster in isotropic problems, the use of the ADO method 

becomes computationally cheaper, since it does not need to use higher quadratures orders to obtain 

good results and it does not involve iterative processes or interpolation schemes.  

Problem 2 deals with transport phenomenon in a homogeneous medium liable to influence of 

linear anisotropic scattering, and the right border of the domain is isolated (G=0.0). For this 

problem again it was chosen to calculate the scalar flux and comparisons with Barichello (1992) 

[1], Barros and Larsen (1990) [4] and Barbosa (2018) [19] were made. 

Table 3: Problem 2 - Convergence analysis and results validation for scalar flux profiles computed by 

ADO2N method and the literature [1, 4]. 

x 
 ADO2N  LTSN SFGN 

N = 4 N  =6 N = 8 N = 8 N = 8 

      0.0 0.82299 0.82299 0.82299 0.82284 0.82284 

   10.0 0.36023 0.36023 0.36023 - - 

   20.0 0.16653 0.16654 0.16654 - - 

   30.0 0.76992x10−1 0.76993x10−1 0.76993x10−1 - - 

   40.0 0.35593x10−1 0.35593x10−1 0.35593x10−1 - - 

   50.0 0.16452x10−1 0.16452x10−1 0.16452x10−1 0.16471x10−1 0.16470x10−1 

   60.0 0.75988x10−2 0.75989x10−2 0.75989x10−2 - - 

   70.0 0.34977x10−2 0.34977x10−2 0.34977x10−2 - - 

   80.0 0.15838x10−2 0.15838x10−2 0.15838x10−2 - - 

   90.0 0.66037x10−3 0.66037x10−3 0.66037x10−3 - - 

100.0 0.12221x10−3 0.12222x10−3 0.12222x10−3 0.12251x10−3 0.12250x10−3 

 

The LTSN formulation [1] is a semi-analytical method (as ADO2N method) where, after the 

discrete ordinates approximation of Eq. (1), an algebraic system is generated by application of 

Laplace Transform on x variable. The SGFN method [4] works like the numerical methods reported 
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on Problem 1, though Green’s function is used on the iterative process. In particular, both methods 

use the full-range Gauss-Legendre quadrature to approximate the scattering integrals.  

Considering the results on Table 3, despite all the good features of the ADO2N method, such as 

the analyticity of the solutions, the independence of numerical schemes, or not having to deal with 

complex variables, a concordance no greater than three digits was obtained with LTSN and SGFN 

methods.  

Table 4: Problem 2 - Convergence test of scalar flux profiles, comparing the ADON [19] and ADO2N 

methods. 

N 

0 cm 50 cm 100 cm 

ADON 
This work 

ADO2N ADON 
This work 

ADO2N ADON 
This work 

ADO2N 

2 0.81725596 0.82305738 0.01699118 0.01643780 0.00012918 0.00012191 

4 0.82225559 0.82299577 0.01653759 0.01645200 0.00012352 0.00012221 

8 0.82283610 0.82299466 0.01647049 0.01645213 0.00012250 0.00012222 

16 0.82295703 - 0.01645649 - 0.00012228 - 

32 0.82298544 - 0.01645320 - 0.00012223 - 

64 0.82299236 - 0.01645240 - 0.00012222 - 

128 0.82299407 - 0.01645220 - 0.00012222 - 

256 0.82299450 - 0.01645215 - 0.00012222 - 

512 0.82299460 - 0.01645214 - 0.00012222 - 

 

However, this same problem was recently studied by Barbosa (2018) [19], who used a version 

of the ADO method associated with full-range Gauss-Legendre quadrature (which will be referred 

here as ADON method), and also had their results compared with those obtained by LTSN and SGFN. 

There, using ADON for N=8, the same agreement with the literature in terms of significant digits 

was obtained and, only with N=64 it was able to reproduce the values obtained here by ADO2N 

with N=8 (Table 4). Thus, it can be said that the results presented on Table 3 for ADO2N with N=8 

are convergent and reliable, confirming the convergence acceleration by half-range quadrature 

scheme. 

 It was already observed in other works [20, 21] that the inclusion of anisotropy effects in the 

phenomenon makes the convergence slower, indicating the importance to associate the half-range 

quadrature with ADO method in terms of computational time and processing. 

 
5. CONCLUSIONS 

In this work it was possible to verify the efficiency when the half-range quadrature scheme is 

associated with ADO method on the solution of transport problems in homogeneous media, mainly 

when anisotropy effects are considered. In particular, Problems 1 and 2, here described, had already 

been analyzed using the ADO method, but no study had been done in the sense of verifying the 

quadrature type influence on the results convergence yet. 

 In the scalar flux profiles obtained for Problem 1, the agreement between different numerical 

methods and ADO2N method is clear, validating the methodology presented and the implemented 

code. Once it is a problem in isotropic medium, as already proven in previous studies, there are no 

major difficulties in terms of convergence, making it not necessary to use high order quadratures. 

In this sense, the contribution of ADO method here is to be a methodology of low computational 

cost, since: i) solutions of the homogeneous problem are analytical in terms of the spatial variable, 

avoiding the construction of computational meshes and the use of iterative schemes or interpolation 

processes; ii) the separation constants calculated by the eigenvalues problem in ADO2N method 

present, when compared to other formulations in the available literature based on SN method, a 

lower order.  

On the other hand, on the results generated for Problem 2, the convergence acceleration by 

changing the quadrature from full-range Gauss-Legendre to half-range scheme is evident. In 

particular, it is shown the versatility of ADO method in the use of quadratures for the scattering 
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term integrals. The fact of using fewer terms on the quadrature implies the obtention of smaller 

systems, reducing processing time.  

It is also important to emphasize that, for the cases here tested, the computational effort was 

relatively low, spending less than two seconds (in a 3.10 GHz Intel Core I7 processor with 8GB of 

RAM) to generate each profile. Moreover, the simplicity of the method allowed the use of free 

distribution software (Octave 4.2.1) for computational implementation.  

In future works, the intention is to maintain the use of ADO method associated with half-range 

quadrature scheme in solving more general one-dimensional transport problems, with higher 

degrees of anisotropy, internal sources and determination of other important physical quantities. 
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